
XForms 1.0

W3C Recommendation 14 October 2003

This version:
http://www.w3.org/TR/2003/REC-xforms-20031014/

Latest version:
http://www.w3.org/TR/xforms/

Previous version:
http://www.w3.org/TR/2003/PR-xforms-20030801/

Editors:
Micah Dubinko, Cardiff Software <mdubinko@Cardiff.com>
Leigh L. Klotz, Jr., Xerox Corporation <Leigh.Klotz@pahv.xerox.com>
Roland Merrick, IBM <Roland_Merrick@uk.ibm.com>
T. V. Raman, IBM <tvraman@almaden.ibm.com>

Please refer to the errata for this document, which may include some normative corrections.

This document is also available in these non-normative formats: single HTML file, diff-
marked HTML, Zip archive.

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright © 2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark,
document use, and software licensing rules apply.

Abstract

XForms is an XML application that represents the next generation of forms for the Web.
By splitting traditional XHTML forms into three parts—XForms model, instance data,
and user interface—it separates presentation from content, allows reuse, gives strong
typing—reducing the number of round-trips to the server, as well as offering device inde-
pendence and a reduced need for scripting.

XForms is not a free-standing document type, but is intended to be integrated into other
markup languages, such as XHTML or SVG.

1

http://www.w3.org/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/2003/PR-xforms-20030801/
mailto:mdubinko@Cardiff.com
mailto:Leigh.Klotz@pahv.xerox.com
mailto:Roland_Merrick@uk.ibm.com
mailto:tvraman@almaden.ibm.com
http://www.w3.org/2003/10/REC-xforms-10-20031014-errata.html
http://www.w3.org/TR/2003/REC-xforms-20031014/index-all.html
http://www.w3.org/TR/2003/REC-xforms-20031014/index-diff.html
http://www.w3.org/TR/2003/REC-xforms-20031014/index-diff.html
http://www.w3.org/TR/2003/REC-xforms-20031014/REC-xforms-20031014.zip
http://www.w3.org/MarkUp/Forms/Translation/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

Status of this Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the latest
revision of this technical report can be found in the W3C technical reports index at ht-
tp://www.w3.org/TR/.

This document is a Recommendation of the W3C. This document has been produced by
the W3C XForms Working Group as part of the XForms Activity within the W3C Inter-
action Domain. The authors of this document are the XForms Working Group participants.

It has been reviewed by W3C Members and other interested parties, and has been endorsed
by the Director as a W3C Recommendation. It is a stable document and may be used as
reference material or cited as a normative reference from another document. W3C's role
in making the Recommendation is to draw attention to the specification and to promote
its widespread deployment. This enhances the functionality and interoperability of the
Web.

The XForms Basic Profile which appeared in the XForms 1.0 Candidate Recommendation
is now a standalone specification. Please refer to the XForms Basic Profile [XForms Basic]
for XForms processing tailored to the needs of constrained devices and environments.

Comments on this document are welcome. Please send them to the public mailing list
www-forms-editor@w3.org. (archive). It is inappropriate to send discussion email to this
address.

The W3C XForms Working Group has released a public test suite for XForms 1.0 along
with an implementation report. A list of current known XForms Implementations is
available.

Patent disclosures relevant to this specification may be found on the XForms Working
Group's public patent disclosure page, in conformance with W3C policy.

Table of Contents

1 About the XForms 1.0 Specification..8
1.1 Background..8
1.2 Reading the Specification..8
1.3 How the Specification is Organized..8
1.4 Documentation Conventions...9
2 Introduction to XForms..10
2.1 An Example...11
2.2 Providing XML Instance Data...13
2.3 Constraining Values...15
2.4 Multiple Forms per Document..16
3 Document Structure..17
3.1 The XForms Namespace...17

STATUS OF THIS DOCUMENT

2

http://www.w3.org/TR/
http://www.w3.org/2003/06/Process-20030618/tr.html#RecsW3C
http://www.w3.org/MarkUp/Forms/Group/
http://www.w3.org/2002/Forms/Activity
http://www.w3.org/Interaction/
http://www.w3.org/Interaction/
mailto:www-forms-editor@w3.org
http://lists.w3.org/Archives/Public/www-forms-editor/
http://www.w3.org/MarkUp/Forms/Test/
http://www.w3.org/MarkUp/Forms/Test/ImplementationReport.html
http://www.w3.org/MarkUp/Forms/#implementations
http://www.w3.org/MarkUp/Forms/2002/disclosures.html

3.2 XForms Core Attribute Collections...18
3.2.1 Common Attributes...18
3.2.2 Linking Attributes...18
3.2.3 Single-Node Binding Attributes...18
3.2.4 Node-Set Binding Attributes..19
3.2.5 Model Item Property Attributes..19
3.3 The XForms Core Module...20
3.3.1 The model Element...20
3.3.2 The instance Element...21
3.3.3 The submission Element...22
3.3.4 The bind Element...24
3.4 The XForms MustUnderstand Module..25
3.5 The XForms Extension Module..25
3.5.1 The extension Element...25
4 Processing Model...26
4.1 Events Overview..26
4.2 Initialization Events...28
4.2.1 The xforms-model-construct Event..28
4.2.2 The xforms-model-construct-done Event...29
4.2.3 The xforms-ready Event...30
4.2.4 The xforms-model-destruct Event..30
4.3 Interaction Events..30
4.3.1 The xforms-next and xforms-previous Events...30
4.3.2 The xforms-focus Event...31
4.3.3 The xforms-help and xforms-hint Events...32
4.3.4 The xforms-refresh Event...32
4.3.5 The xforms-revalidate Event..32
4.3.6 The xforms-recalculate Event...33
4.3.7 The xforms-rebuild Event...34
4.3.8 The xforms-reset Event..35
4.3.9 The xforms-submit Event...35
4.4 Notification Events..35
4.4.1 The DOMActivate Event..35
4.4.2 The xforms-value-changed Event...35
4.4.3 The xforms-select and xforms-deselect Events..36
4.4.4 The xforms-scroll-first and xforms-scroll-last Events..36
4.4.5 The xforms-insert and xforms-delete Events..36
4.4.6 The xforms-valid Event..37
4.4.7 The xforms-invalid Event...37
4.4.8 The DOMFocusIn Event...37
4.4.9 The DOMFocusOut Event..38
4.4.10 The xforms-readonly Event..38
4.4.11 The xforms-readwrite Event...38
4.4.12 The xforms-required Event...39
4.4.13 The xforms-optional Event...39

TABLE OF CONTENTS

3

4.4.14 The xforms-enabled Event..39
4.4.15 The xforms-disabled Event...40
4.4.16 The xforms-in-range Event...40
4.4.17 The xforms-out-of-range Event..40
4.4.18 The xforms-submit-done Event..41
4.4.19 The xforms-submit-error Event..41
4.5 Error Indications..41
4.5.1 The xforms-binding-exception Event...41
4.5.2 The xforms-link-exception Event...42
4.5.3 The xforms-link-error Event...42
4.5.4 The xforms-compute-exception Event...42
4.6 Event Sequencing..42
4.6.1 For input, secret, textarea, range, or upload Controls...43
4.6.2 For output Controls...43
4.6.3 For select or select1 Controls...43
4.6.4 For trigger Controls..43
4.6.5 For submit Controls..43
4.6.6 Sequence: Selection Without Value Change...43
4.6.7 Sequence: Value Change with Focus Change...44
4.6.8 Sequence: Activating a Trigger...44
4.6.9 Sequence: Submission..44
5 Datatypes..44
5.1 XML Schema Built-in Datatypes..44
5.2 XForms Datatypes...46
5.2.1 xforms:listItem...46
5.2.2 xforms:listItems..46
5.2.3 xforms:dayTimeDuration...47
5.2.4 xforms:yearMonthDuration..47
6 Model Item Properties..47
6.1 Model Item Property Definitions...47
6.1.1 The type Property...48
6.1.2 The readonly Property..49
6.1.3 The required Property...49
6.1.4 The relevant Property...50
6.1.5 The calculate Property..52
6.1.6 The constraint Property..52
6.1.7 The p3ptype Property...53
6.2 Schema Constraints...54
6.2.1 Atomic Datatype...54
7 XPath Expressions in XForms..55
7.1 XPath Datatypes..55
7.2 Feature string for the hasFeature method call...56
7.3 Instance Data...56
7.3.1 The getInstanceDocument() Method..56
7.3.2 The rebuild() Method..56

TABLE OF CONTENTS

4

7.3.3 The recalculate() Method..56
7.3.4 The revalidate() Method...57
7.3.5 The refresh() Method..57
7.4 Evaluation Context..57
7.5 Binding Expressions..58
7.5.1 Dynamic Dependencies..59
7.5.2 Model Binding Expressions...59
7.5.3 UI Binding Expressions..59
7.5.4 UI Binding in other XML vocabularies..59
7.5.5 Binding Examples..60
7.6 XForms Core Function Library...60
7.7 Boolean Functions...61
7.7.1 The boolean-from-string() Function...61
7.7.2 The if() Function...61
7.8 Number Functions...61
7.8.1 The avg() Function...61
7.8.2 The min() Function...61
7.8.3 The max() Function..61
7.8.4 The count-non-empty() Function...62
7.8.5 The index() Function..62
7.9 String Functions...62
7.9.1 The property() Function...62
7.10 Date and Time Functions...63
7.10.1 The now() Function..63
7.10.2 The days-from-date() Function...63
7.10.3 The seconds-from-dateTime() Function...63
7.10.4 The seconds() Function..64
7.10.5 The months() Function...64
7.11 Node-set Functions..65
7.11.1 The instance() Function..65
7.12 Extension Functions..65
8 Form Controls...66
8.1 The XForms Form Controls Module...66
8.1.1 Implementation Requirements Common to All Form Controls.............................68
8.1.2 The input Element..70
8.1.3 The secret Element...71
8.1.4 The textarea Element..72
8.1.5 The output Element..73
8.1.6 The upload Element..74
8.1.7 The range Element..76
8.1.8 The trigger Element..77
8.1.9 The submit Element..78
8.1.10 The select Element...79
8.1.11 The select1 Element...81
8.2 Common Markup for Selection Controls..83

TABLE OF CONTENTS

5

8.2.1 The choices Element...83
8.2.2 The item Element...83
8.2.3 The value Element..83
8.3 Additional Elements..83
8.3.1 The filename Element...84
8.3.2 The mediatype Element..84
8.3.3 The label Element...84
8.3.4 The help Element..85
8.3.5 The hint Element..85
8.3.6 The alert Element...86
9 XForms User Interface...86
9.1 The XForms Group Module..86
9.1.1 The group Element...86
9.2 The XForms Switch Module...87
9.2.1 The switch Element..87
9.2.2 The case Element..88
9.2.3 The toggle Element...89
9.3 The XForms Repeat Module...89
9.3.1 The repeat Element...90
9.3.2 Creating Repeating Structures Via Attributes...91
9.3.3 The itemset Element...93
9.3.4 The copy Element...94
9.3.5 The insert Element..95
9.3.6 The delete Element...96
9.3.7 The setindex Element...97
9.3.8 Repeat Processing...98
9.3.9 Nested Repeats...99
9.3.10 User Interface Interaction...99
10 XForms Actions..100
10.1 The XForms Action Module..100
10.1.1 The action Element...101
10.1.2 The dispatch Element...103
10.1.3 The rebuild Element...103
10.1.4 The recalculate Element...104
10.1.5 The revalidate Element...104
10.1.6 The refresh Element...104
10.1.7 The setfocus Element...105
10.1.8 The load Element..105
10.1.9 The setvalue Element..106
10.1.10 The send Element...107
10.1.11 The reset Element...107
10.1.12 The message Element...108
10.1.13 Actions insert, delete and setindex...109
11 Submit...109
11.1 The xforms-submit Event..109

TABLE OF CONTENTS

6

11.2 Submission Options...111
11.3 Serialization as application/xml..112
11.4 Serialization as multipart/related...113
11.5 Serialization as multipart/form-data..114
11.6 Serialization as application/x-www-form-urlencoded...115
11.7 The post, multipart-post, form-data-post, and urlencoded-post Submit

Methods...116
11.8 The put Submit Method...117
11.9 The get Submit Method...117
12 Conformance..117
12.1 Conformance Levels..117
12.1.1 XForms Full..117
12.2 Conformance Description..118
12.2.1 Conforming XForms Processors..118
12.2.2 Conforming XForms Documents...118
12.2.3 Conforming XForms Generators..119
13 Glossary Of Terms..119

Appendices

A Schema for XForms...121
A.1 Schema for XML Events..121
B References..121
B.1 Normative References...121
B.2 Informative References...122
C Privacy Considerations...123
C.1 Using P3P with XForms...123
D Recalculation Sequence Algorithm...124
D.1 Details on Creating the Master Dependency Directed Graph................................125
D.2 Details on Creating the Pertinent Dependency Subgraph.......................................125
D.3 Details on Computing Individual Vertices..127
D.4 Example of Calculation Processing..127
E Input Modes...128
E.1 inputmode Attribute Value Syntax..129
E.2 User Agent Behavior...129
E.3 List of Tokens..130
E.3.1 Script Tokens..130
E.3.2 Modifier Tokens...132
E.4 Relationship to XML Schema pattern facets..132
E.5 Examples...133
F XForms and Styling (Non-Normative)...133
F.1 Pseudo-classes...133
F.2 Pseudo-elements..134
F.3 Examples...134
G Complete XForms Examples (Non-Normative)..135

TABLE OF CONTENTS

7

G.1 XForms in XHTML..135
G.2 Editing Hierarchical Bookmarks Using XForms..138
G.3 Survey Using XForms and SVG...141
H Changelog (Non-Normative)...144
I Acknowledgments (Non-Normative)..144
J Production Notes (Non-Normative)..146

1 About the XForms 1.0 Specification

1.1 Background

Forms are an important part of the Web, and they continue to be the primary means for
enabling interactive Web applications. Web applications and electronic commerce solutions
have sparked the demand for better Web forms with richer interactions. XForms 1.0 is the
response to this demand, and provides a new platform-independent markup language for
online interaction between a person (through an XForms Processor) and another, usually
remote, agent. XForms are the successor to HTML forms, and benefit from the lessons
learned from HTML forms.

Further background information on XForms can be found at ht-
tp://www.w3.org/MarkUp/Forms.

1.2 Reading the Specification

This specification has been written with various types of readers in mind—in particular
XForms authors and XForms implementors. We hope the specification will provide authors
with the tools they need to write efficient, attractive and accessible documents without
overexposing them to the XForms implementation details. Implementors, however, should
find all they need to build conforming XForms Processors. The specification begins with
a general presentation of XForms before specifying the technical details of the various
XForms components.

The specification has been written with various modes of presentation in mind. In case of
a discrepancy, the online electronic version is considered the authoritative version of the
document.

This document uses the terms may, must, and should in accord with [RFC 2119].

1.3 How the Specification is Organized

The specification is organized into the following chapters:

Chapters 1 and 2

An introduction to XForms. The introduction outlines the design principles and in-
cludes a brief tutorial on XForms.

1 ABOUT THE XFORMS 1.0 SPECIFICATION

8

http://www.w3.org/MarkUp/Forms/
http://www.w3.org/MarkUp/Forms/

Chapters 3 and up

XForms reference manual. The bulk of the reference manual consists of the specific-
ation of XForms. This reference defines XForms and how XForms Processors must
interpret the various components in order to claim conformance.

Appendixes

Appendixes contain a normative description of XForms described in XML Schema,
information on references, and other useful information.

1.4 Documentation Conventions

Throughout this document, the following namespace prefixes and corresponding namespace
identifiers are used:

xforms: The XForms namespace (http://www.w3.org/2002/xforms) 3.1
The XForms Namespace
html: The XHTML namespace (http://www.w3.org/1999/xhtml) [XHTML
1.0]
xsd: The XML Schema namespace (http://www.w3.org/2001/XMLS-
chema)[XML Schema part 1]
xsi: The XML Schema for instances namespace (ht-
tp://www.w3.org/2001/XMLSchema-instance)[XML Schema part 1]
ev: The XML Events namespace (http://www.w3.org/2001/xml-
events)[XML Events]
my: Any user defined namespace

This is only a convention; any namespace prefix may be used in practice.

The following typographical conventions are used to present technical material in this
document.

Official terms are defined in the following manner: [Definition: You can find most terms
in chapter 13 Glossary Of Terms]. Links to terms may be specially highlighted where
necessary.

The XML representations of various elements within XForms are presented using the
syntax for Abstract Modules in XHTML Modularization [XHTML Modularization].

Examples are set off typographically:

Example: Example item

Example Item

1 ABOUT THE XFORMS 1.0 SPECIFICATION

9

References to external documents appear as follows: [Sample Reference] with links to the
references section of this document.

Sample Reference
Reference - linked to from above.

The following typesetting convention is used for non-normative commentary:

Note:

A gentle explanation or admonition to readers.

2 Introduction to XForms

XForms has been designed on the basis of several years' experience with HTML forms.
HTML Forms have formed the backbone of the e-commerce revolution, and having shown
their worth, have also indicated numerous ways they could be improved.

The primary difference when comparing XForms with HTML Forms, apart from XForms
being in XML, is the separation of the data being collected from the markup of the controls
collecting the individual values. By doing this, it not only makes XForms more tractable
by making it clear what is being submitted where, it also eases reuse of forms, since the
underlying essential part of a Form is no longer irretrievably bound to the page it is used
in.

A second major difference is that XForms, while designed to be integrated into XHTML,
is no longer restricted only to be a part of that language, but may be integrated into any
suitable markup language.

XForms has striven to improve authoring, reuse, internationalization, accessibility, usab-
ility, and device independence. Here is a summary of the primary benefits of using XForms:

Strong typing

Submitted data is strongly typed and can be checked using off-the-shelf tools. This
speeds up form filling since it reduces the need for round trips to the server for val-
idation.

XML submission

This obviates the need for custom server-side logic to marshal the submitted data to
the application back-end. The received XML instance document can be directly
validated and processed by the application back-end.

Existing schema re-use

This obviates duplication, and ensures that updating the validation rules as a result
of a change in the underlying business logic does not require re-authoring validation
constraints within the XForms application.

2 INTRODUCTION TO XFORMS

10

External schema augmentation

This enables the XForms author to go beyond the basic set of constraints available
from the back-end. Providing such additional constraints as part of the XForms
Model enhances the overall usability of the resulting Web application.

Internationalization

Using XML 1.0 for instance data ensures that the submitted data is internationalization
ready.

Enhanced accessibility

XForms separates content and presentation. User interface controls encapsulate all
relevant metadata such as labels, thereby enhancing accessibility of the application
when using different modalities. XForms user interface controls are generic and
suited for device-independence.

Multiple device support

The high-level nature of the user interface controls, and the consequent intent-based
authoring of the user interface makes it possible to re-target the user interaction to
different devices.

Less use of scripting

By defining XML-based declarative event handlers that cover common use cases,
the majority of XForms documents can be statically analyzed, reducing the need for
imperative scripts for event handlers.

2.1 An Example

In the XForms approach, forms are comprised of a section that describes what the form
does, called the XForms Model, and another section that describes how the form is to be
presented.

Consider a simple electronic commerce form that might be rendered as follows:

It is clear that we are collecting a value that represents whether cash or credit card is being
used, and if a credit card, its number and expiration date.

2 INTRODUCTION TO XFORMS

11

This can be represented in the XForms model element, which in XHTML would typically
be contained within the head section:

<xforms:model>

 <xforms:instance>

 <ecommerce xmlns="">

 <method/>

 <number/>

 <expiry/>

 </ecommerce>

 </xforms:instance>

 <xforms:submission action="http://example.com/submit" method="post" id="submit" includenamespaceprefixes=""/>

</xforms:model>

This simply says that we are collecting three pieces of information (note that we have as
yet not said anything about their types), and that they will be submitted using the URL in
the action attribute.

XForms 1.0 defines a device-neutral, platform-independent set of form controls suitable
for general-purpose use. The controls are bound to the XForms Model via the XForms
binding mechanism, in this simple case using the ref attribute on the controls. In XHTML,
this markup would typically appear within the body section (note that we have intentionally
defaulted the XForms namespace prefix here):

<select1 ref="method">

 <label>Select Payment Method:</label>

 <item>

 <label>Cash</label>

 <value>cash</value>

 </item>

 <item>

 <label>Credit</label>

 <value>cc</value>

 </item>

</select1>

<input ref="number">

 <label>Credit Card Number:</label>

</input>

<input ref="expiry">

 <label>Expiration Date:</label>

</input>

<submit submission="submit">

 <label>Submit</label>

</submit>

2 INTRODUCTION TO XFORMS

12

Notice the following features of this design:

• The user interface is not hard-coded to use radio buttons. Different devices (such as
voice browsers) can render the concept of "select one" as appropriate.

• Form controls always have labels directly associated with them as child elements—this
is a key feature designed to enhance accessibility.

• There is no need for an enclosing form element, as in HTML. (See 2.4 Multiple Forms
per Document for details on how to author multiple forms per document)

• Markup for specifying form controls has been simplified in comparison with HTML
forms.

The fact that you can bind form controls to the model like this simplifies integrating
XForms into other host languages, since any form control markup may be used to bind to
the model.

2.2 Providing XML Instance Data

The XForms Processor can directly submit the data collected as XML. In the example,
the submitted data would look like this:

Example: Submitted Data

<ecommerce>

 <method>cc</method>

 <number>1235467789012345</number>

 <expiry>2001-08</expiry>

</ecommerce>

XForms processing keeps track of the state of the partially filled form through this instance
data. Initial values for the instance data may be provided or left empty as in the example.
Element instance essentially holds a skeleton XML document that gets updated as the
user fills out the form. It gives the author full control on the structure of the submitted
XML data, including namespace information. When the form is submitted, the instance
data is serialized as an XML document. Here is an alternative version of the earlier example:

Example: Model

2 INTRODUCTION TO XFORMS

13

<xforms:model>

 <xforms:instance>

 <payment method="cc" xmlns="http://commerce.example.com/payment">

 <number/>

 <expiry/>

 </payment>

 </xforms:instance>

 <xforms:submission action="http://example.com/submit" method="post" includenamespaceprefixes="#default"/>

</xforms:model>

In this case the submitted data would look like this:

Example: Submitted Data

<payment method="cc" xmlns="http://commerce.example.com/payment">

 <number>1235467789012345</number>

 <expiry>2001-08</expiry>

</payment>

This design has features worth calling out:

• There is complete flexibility in the structure of the XML instance data, including the
use of attributes. Notice that XML namespaces are used, and that a wrapper element of
the author's choosing contains the instance data.

• Empty elements number and expiry serve as place-holders in the XML structure,
and will be filled in with form data provided by the user.

• An initial value ("cc") for the form control is provided through the instance data, in
this case an attribute method. In the submitted XML, this initial value will be replaced
by the user input, if the user changes the form control displaying that data.

To connect this instance data with form controls, the ref attributes on the form controls
need to be changed to point to the proper part of the instance data, using binding expres-
sions:

Example: Binding Form Controls to Instance Nodes with ref

... xmlns:my="http://commerce.example.com/payment"

 ...

 <xforms:select1 ref="@method">...</xforms:select1>

 ...

 <xforms:input ref="my:number">...</xforms:input>

 ...

 <xforms:input ref="/my:payment/my:expiry">...</xforms:input>

2 INTRODUCTION TO XFORMS

14

Binding expressions are based on XPath [XPath 1.0], including the use of the @ character
to refer to attributes, as seen here. Note that for illustrative purposes, the first two expres-
sions make use of the XPath context node, which defaults to the top-level element (here
my:payment). The third expression shows an absolute path.

2.3 Constraining Values

XForms allows data to be checked for validity as the form is being filled. In the absence
of specific information about the types of values being collected, all values are returned
as strings, but it is possible to assign types to values in the instance data. In this example,
number should accept digits only, and should have between 14 and 18 digits and expiry
should accept only valid month/date combinations.

Furthermore, the credit card information form controls for number and expiry are only
relevant if the "cc" option is chosen for method, but are required in that case.

By specifying an additional component, model item properties, authors can include rich
declarative validation information in forms. Such information can be taken from XML
Schemas as well as XForms-specific additions, such as relevant. Such properties appear
on bind elements, while Schema constraints are expressed in an XML Schema fragment,
either inline or external. For example:

Example: Declarative Validation with Model Item Properties

... xmlns:my="http://commerce.example.com/payment"...

 <xforms:model>

 ...

 <xforms:bind nodeset="/my:payment/my:number"

 relevant="/my:payment/@method = 'cc'"

 required="true()"

 type="my:ccnumber"/>

 <xforms:bind nodeset="/my:payment/my:expiry"

 relevant="/my:payment/@method = 'cc'"

 required="true()"

 type="xsd:gYearMonth"/>

 <xsd:schema ...>

 ...

 <xsd:simpleType name="ccnumber">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{14,18}"/>

 </xsd:restriction>

 </xsd:simpleType>

 ...

 </xsd:schema>

 </xforms:model>

Note:

2 INTRODUCTION TO XFORMS

15

In the above example, the relevant expression uses absolute XPath notation (be-
ginning with /) because the evaluation context nodes for computed expressions are
determined by the bind ref binding expression (see 7.4 Evaluation Context), and
so any relative node path in the first bind relevant above would be relative to
/my:payment/my:number

2.4 Multiple Forms per Document

XForms processing places no limits on the number of individual forms that can be placed
in a single containing document. When a single document contains multiple forms, each
form needs a separate model element, each with an id attribute so that they can be refer-
enced from elsewhere in the containing document.

In addition, form controls should specify which model element contains the instance data
to which they bind. This is accomplished through a model attribute that is part of the
binding attributes. If no model attribute is specified on the binding element, the nearest
ancestor binding element's model attribute is used, and failing that, the first XForms
Model in document order is used. This technique is called 'scoped resolution', and is used
frequently in XForms.

The next example adds an opinion poll to our electronic commerce form.

Example: Adding a poll model

<xforms:model>

 <xforms:instance>

 ...payment instance data...

 </xforms:instance>

 <xforms:submission action="http://example.com/submit" method="post"/>

</xforms:model>

<xforms:model id="poll">

 <xforms:instance>

 <helpful/>

 </xforms:instance>

 <xforms:submission id="pollsubmit" .../>

</xforms:model>

Additionally, the following markup would appear in the body section of the document:

Example: Form Controls for poll model

2 INTRODUCTION TO XFORMS

16

<xforms:select1 ref="/helpful" model="poll">

 <xforms:label>How useful is this page to you?</xforms:label>

 <xforms:item>

 <xforms:label>Not at all helpful</xforms:label>

 <xforms:value>0</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Barely helpful</xforms:label>

 <xforms:value>1</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Somewhat helpful</xforms:label>

 <xforms:value>2</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Very helpful</xforms:label>

 <xforms:value>3</xforms:value>

 </xforms:item>

</xforms:select1>

<xforms:submit submission="pollsubmit">

 <xforms:label>Submit</xforms:label>

</xforms:submit>

The main difference here is the use of model="poll", which identifies the instance.
Note that submit refers to the submission element by ID and does not require binding
attributes.

More XForms examples can be found in G Complete XForms Examples.

3 Document Structure

XForms 1.0 is an application of XML [XML 1.0] and has been designed for use within
other XML vocabularies—in particular within a future version of XHTML [XHTML 1.0].
XForms always requires such a host language. This chapter discusses the structure of
XForms that allow XForms to be used with other document types.

3.1 The XForms Namespace

The XForms namespace has the URI: http://www.w3.org/2002/xforms.

XForms Processors must use the XML namespaces mechanism [XML Names] to recognize
elements and attributes from this namespace.

3 DOCUMENT STRUCTURE

17

3.2 XForms Core Attribute Collections

3.2.1 Common Attributes

The Common Attribute Collection applies to every element in the XForms namespace.

anyAttribute

Foreign attributes are allowed on all XForms elements.

A host language must permit an attribute of type xsd:ID on each XForms element.

3.2.2 Linking Attributes

The Linking Attributes Collection applies to XForms elements which include a link to a
remote resource.

src

The src attribute assigns a URI to be automatically retrieved.

Note:

Since linking attribute URIs are defined in terms of the XML Schema datatype
xsd:anyURI, the same internationalization benefits and white space cautions apply
as discussed in [XML Schema part 2].

Behavior of relative URIs in links is determined by the host language, although [XML
Base] processing is strongly recommended.

Note:

The XForms Working Group is tracking with the HTML Working Group on a
method of describing link structures.

3.2.3 Single-Node Binding Attributes

The following attributes define a binding between a form control or an action and an in-
stance data node defined by an XPath expression.

ref

Binding expression interpreted as XPath. This attribute has no meaning when a bind
attribute is present.

model

XForms Model selector. Specifies the ID of an XForms Model to be associated with
this binding element. This attribute has no meaning for the current binding element
when a bind attribute is present. Rules for determining the context XForms Model
are located at 7.4 Evaluation Context.

3 DOCUMENT STRUCTURE

18

bind

Reference to a bind element.

One of ref or bind is required. When bind is used, the node is determined by the ref-
erenced bind.

It is an exception (4.5.1 The xforms-binding-exception Event) if the XForms Processor
encounters a model IDREF value that refers to an ID not on a model element, or a
bind IDREF value that refers to an ID not on a bind element.

First-node rule: When a Single-Node Binding attribute selects a node-set of size > 1, the
first node in the node-set, based on document order, is used.

3.2.4 Node-Set Binding Attributes

The following attributes define a binding between a form control or an action and a node-
set defined by the XPath expression.

nodeset

Binding expression interpreted as XPath. This attribute has no meaning when a bind
attribute is present.

model

XForms Model selector. Specifies the ID of an XForms Model to be associated with
this binding element. This attribute has no meaning for the current binding element
when a bind attribute is present. Rules for determining the context XForms Model
are located at 7.4 Evaluation Context.

bind

Reference to a bind element.

One of nodeset or bind is required. When bind is used, the node-set is determined
by the referenced bind.

It is an exception (4.5.1 The xforms-binding-exception Event) if the XForms Processor
encounters a model IDREF value that refers to an id not on a model element, or a bind
IDREF value that refers to an id not on a bind element.

3.2.5 Model Item Property Attributes

This collection contains one attribute for each model item property, with an attribute name
exactly matching the name of the model item property, as defined in 6.1 Model Item
Property Definitions.

3 DOCUMENT STRUCTURE

19

3.3 The XForms Core Module

The XForms Core Module defines the major structural elements of XForms, intended for
inclusion in a containing document. The elements and attributes included in this module
are:

Minimal Content
Model

AttributesElement

(in-
stance|xsd:schema|

Common, Events, functions (QNameList),
schema (list of xsd:anyURI)

model

submission|bind|Ac-
tion)*
(ANY)Common, Linkinginstance
Action*Common, ref (binding-expression), bind

(xsd:IDREF), action (xsd:anyURI), method
submission

("post"|"get"|"put"|"form-data-post"|"urlencoded-
post"|qname-but-not-ncname), version
(xsd:NMTOKEN), indent (xsd:boolean), media-
type (xsd:string), encoding (xsd:string), omit-xml-
declaration (xsd:boolean), standalone
(xsd:boolean), cdata-section-elements
(QNameList), replace ("all"|"in-
stance"|"none"|qname-but-not-ncname), separ-
ator (';' | '&'), includenamespaceprefixes
(xsd:NMTOKENS)

(bind)*Common, Model Item Properties, nodeset
(model-binding-expression)

bind

Elements defined in the XForms Actions module, when that module is included, are also
allowed in the content model of model and submission, as shown above.

Within the containing document, these structural elements are typically not rendered.

The XForms Processor must ignore any foreign-namespaced attributes that are unrecog-
nized, and must process unrecognized foreign-namespaced elements according to the 3.4
The XForms MustUnderstand Module rules.

Note that the presence of foreign namespaced elements is subject to the definition of the
containing document profile.

3.3.1 The model Element

This element represents a form definition and is used as a container for elements that
define the XForms Model. No restriction is placed on how many model elements may
exist within a containing document.

Common Attributes: Common, Events

3 DOCUMENT STRUCTURE

20

Attributes from XML Events are allowed on this element to facilitate creating observers.
This element is not an XForms Action, and has no predefined behavior event-based beha-
vior.

Special Attributes:

functions

Optional space-separated list of XPath extension functions (represented by QNames)
required by this XForms Model. Guidance on the use of this attribute is at 7.12 Ex-
tension Functions.

schema

Optional list of xsd:anyURI links to XML Schema documents outside this model
element. The XForms Processor must process all Schemas listed in this attribute.
Within each XForms Model, there is a limit of one Schema per namespace declaration,
including inline and linked Schemas.

Note:

The schema list may include URI fragments referring to elements located
elsewhere in the containing document; e.g. "#myschema".

This example shows a simple usage of model, with the XForms namespace defaulted:

Example: Model

<model id="Person" schema="MySchema.xsd">

 <instance src="http://example.com/cgi-bin/get-instance" />

 ...

</model>

3.3.2 The instance Element

This optional element contains or references initial instance data.

Common Attributes: Common

Special Attributes:

Linking Attributes

Optional link to externally defined initial instance data. If the link traversal fails, it
is treated as an exception (4.5.2 The xforms-link-exception Event).

If both an attribute and inline content are provided, the linked version takes precedence
as described at 4.2.1 The xforms-model-construct Event.

If the initial instance data is given by a link, then the instance data is formed by creating
an XPath data model of the linked resource.

3 DOCUMENT STRUCTURE

21

If the initial instance data is given by inline content, then instance data is obtained by first
creating a detached copy of the inline content (including namespaces inherited from the
enveloping ancestors), then creating an XPath data model over the detached copy. The
detached copy must consist of content that would be well-formed XML if it existed in a
separate document. Note that this restricts the element content of instance to a single
child element.

Note:

XForms authors who need additional control over the serialization of namespace
nodes can use the includenamespaceprefixes attribute on the submission
element.

3.3.3 The submission Element

This element represents declarative instructions on what to submit, and how. Details of
submit processing are described at 11 Submit.

Common Attributes: Common

Special Attributes:

bind

Optional reference to a bind element. When present, the binding reference on this
attribute is used in preference to any binding reference from the ref attribute.

ref

Optional selector binding expression enabling submission of a portion of the instance
data. The selected node, and all descendants, are selected for submission. The default
value is "/".

action

Required destination URI for submitting instance data.

method

Required attribute specifying the protocol to be used to transmit the serialized instance
data. There is no default value.

version

Optional attribute specifying the version of XML to be serialized.

indent

Optional attribute specifying whether the serializer should add extra white space
nodes for readability.

mediatype

3 DOCUMENT STRUCTURE

22

Optional attribute specifying the mediatype for XML instance serialization. Authors
should ensure that the type specified is compatible with application/xml.

encoding

Optional attribute specifying an encoding for serialization.

omit-xml-declaration

Optional attribute specifying whether to omit the XML declaration on the serialized
instance data.

standalone

Optional attribute specifying whether to include a standalone declaration in the
serialized XML.

cdata-section-elements

Optional attribute specifying element names to be serialized with CDATAsections.

replace

Optional attribute specifying how the information returned after submit should be
applied. In the absence of this attribute, "all" is assumed.

separator

Optional attribute specifying the separator character between name/value pairs in
urlencoding. The default value is ';'.

includenamespaceprefixes

Optional attribute providing control over namespace serialization. If absent, all
namespace nodes present in the instance data are considered for serialization. If
present, specifies list of namespace prefixes to consider for serialization, in addition
to those visibly utilized. As in [Exc-C14N], the special value #default specifies
the default namespace.

The following examples show how various options on element submission can affect
serialization as application/xml. Given the following XForms fragment:

<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms"

 xmlns:my="http://ns.example.org/2003">

 <xforms:instance>

 <qname xmlns="">my:sample</qname>

 </xforms:instance>

 <xforms:submission method="post" action="..."/>

</xforms:model>

3 DOCUMENT STRUCTURE

23

Note that the includenamespaceprefixes attribute is not present, which causes
all namespace nodes to be serialized, resulting in the following serialized instance data:

<qname xmlns:xforms="http://www.w3.org/2002/xforms"

 xmlns:my="http://ns.example.org/2003">my:sample</qname>

In particular, note that the XForms namespace has been serialized. To prevent this example
from including the unneeded XForms namespace while maintaining the needed my prefix,
includenamespaceprefixes="my" must be added to the submission element.
When this attribute is present, the author takes responsibility to list all namespace prefixes
not visibly utilized by the submitted instance data.

The following attributes correspond (in spelling, processing, and default values) to attributes
on the output element of [XSLT 1.0], with the exception of using xsd:boolean to
replace "yes"|"no":

version
indent
encoding
omit-xml-declaration
cdata-section-elements

Note:

The following XSLT attributes have no counterpart in XForms:

doctype-system
doctype-public

Elements defined in the XForms Actions module, when that module is included, are also
allowed in the content model of submission.

3.3.4 The bind Element

Element bind selects a node-set selected from the instance data with a model binding
expression in the nodeset attribute. Other attributes on element bind encode model
item properties to be applied to each node in the node-set. When bind has an attribute
of type xsd:ID, the bind then associates that identifier with the selected node-set.

Common Attributes: Common, Model Item Properties

Special Attributes:

nodeset

A model binding expression that selects the set of nodes on which this bind operates,
as defined in 7.5.2 Model Binding Expressions.

3 DOCUMENT STRUCTURE

24

When additional nodes are added through action insert, the newly added nodes are in-
cluded in any node-sets matched by binding expressions—see action insert in 9.3.5
The insert Element.

See 7.4 Evaluation Context for details on how binding affects the evaluation context.

3.4 The XForms MustUnderstand Module

Certain elements, such as extension or foreign namespaced elements defined in a host
language might be critical to the operation of a particular form. To indicate this, the
MustUnderstand module defines a single attribute that can be used on any element.

Minimal Content ModelAttributesElement
n/axforms:mustUnderstand (xsd:boolean)ANY

It is a terminating error that must be reported to the user if an element is marked mustUn-
derstand="true", and the XForms Processor does not have an implementation
available for processing the element.

3.5 The XForms Extension Module

There are many different ways a host language might include XForms. One approach uses
only well-formed processing, disregarding validation. Another case uses strict validation,
for example XHTML 1.0, in which only predefined elements are allowed. Another common
approach is to allow unregulated content in a few selected places. A host language that
chooses this option can use the Extension module.

Minimal Content ModelAttributesElement
ANYCommonextension

3.5.1 The extension Element

Optional element extension is a container for application-specific extension elements
from any namespace other than the XForms namespace. This specification does not define
the processing of this element.

Common Attributes: Common

For example, RDF metadata could be attached to an individual form control as follows:

3 DOCUMENT STRUCTURE

25

<input ref="dataset/user/email" id="email-input">

 <label>Enter your email address</label>

 <extension>

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Description rdf:about="#email-input">

 <my:addressBook>personal</my:addressBook>

 </rdf:Description>

 </rdf:RDF>

 </extension>

</input>

4 Processing Model

This chapter defines the XForms Processing Model declaratively by enumerating the
various states attained by an XForms Processor and the possible state transitions that exist
in each of these states. The chapter enumerates the pre-conditions and post-conditions that
must be satisfied in each of these states. XForms Processors may be implemented in any
manner, so long as the end results are identical to that described in this chapter.

State transitions are in general initiated by sending events to parts of the XForms tree. The
XForms Processing Model consists of events in the following categories:

• Initialization

• Interaction

• Notification

• Error Conditions

4.1 Events Overview

XForms processing is defined in terms of events, event handlers, and event responses.
XForms uses the events system defined in [DOM2 Events][XML Events], with an event
capture phase, arrival of the event at its Target, and finally the event bubbling phase.

Throughout this chapter, each reference to "form control" as a target element is a shorthand
for any of the following elements: input, secret, textarea, output, upload,
trigger, range, submit, select, select1, or group.

Target elementBubbles?Cancelable?Event name
4.2 Initialization Events

modelYesNoxforms-model-construct
modelYesNoxforms-model-construct-done
modelYesNoxforms-ready
modelYesNoxforms-model-destruct

4.3 Interaction Events

4 PROCESSING MODEL

26

Target elementBubbles?Cancelable?Event name
form controlNoYesxforms-previous
form controlNoYesxforms-next
form controlNoYesxforms-focus
form controlYesYesxforms-help
form controlYesYesxforms-hint
modelYesYesxforms-rebuild
modelYesYesxforms-refresh
modelYesYesxforms-revalidate
modelYesYesxforms-recalculate
modelYesYesxforms-reset
submissionYesYesxforms-submit

4.4 Notification Events
form controlYesYesDOMActivate
form controlYesNoxforms-value-changed
item or caseYesNoxforms-select
item or caseYesNoxforms-deselect
repeatYesNoxforms-scroll-first
repeatYesNoxforms-scroll-last
instanceYesNoxforms-insert
instanceYesNoxforms-delete
form controlYesNoxforms-valid
form controlYesNoxforms-invalid
form controlYesNoDOMFocusIn
form controlYesNoDOMFocusOut
form controlYesNoxforms-readonly
form controlYesNoxforms-readwrite
form controlYesNoxforms-required
form controlYesNoxforms-optional
form controlYesNoxforms-enabled
form controlYesNoxforms-disabled
form controlYesNoxforms-in-range
form controlYesNoxforms-out-of-range
submissionYesNoxforms-submit-done
modelYesNoxforms-submit-error

4.5 Error Indications
any element that can
contain a binding expres-
sion

YesNoxforms-binding-exception

modelYesNoxforms-link-exception
modelYesNoxforms-link-error
modelYesNoxforms-compute-exception

4 PROCESSING MODEL

27

4.2 Initialization Events

This section defines the various stages of the initialization phase. The processor begins
initialization by dispatching an event xforms-model-construct to each XForms
Model in the containing document.

4.2.1 The xforms-model-construct Event

Dispatched by the containing document processor to bootstrap XForms Processor initial-
ization.

Target: model

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following:

1 All XML Schemas loaded. If an error occurs while attempting to access or process a
remote document, processing halts with an exception (4.5.2 The xforms-link-exception
Event).

2 If an external source for the initial instance data is given, an XPath data model [7 XPath
Expressions in XForms] is constructed from it; otherwise if inline initial instance data
is given, that is used instead. If the external initial instance data is not well-formed XML
or cannot be retrieved, processing halts with an exception (4.5.2 The xforms-link-ex-
ception Event). If neither are given, the data model is not constructed in this phase, but
during user interface construction (4.2.2 The xforms-model-construct-done Event).

3 If applicable, P3P initialized. [P3P 1.0]

4 Instance data is constructed. All strings inserted into the instance data are subject to
Unicode normalization. All model item properties are initialized by processing all bind
elements in document order. For each bind:

a The attribute nodeset attached to the bind is evaluated, resulting in a set of nodes
selected.

b For each node in the node-set, model item properties are applied according to the
remaining attributes on bind: the string value of each attribute (with a name
matching one of the properties defined in 6.1 Model Item Property Definitions)
is copied as the local value of the model item property of the same name.

c If the node already contains a model item property of the same name, XForms pro-
cessing for this containing document halts with an exception (4.5.1 The xforms-
binding-exception Event).

4 PROCESSING MODEL

28

5 Perform an xforms-rebuild, xforms-recalculate, and xforms-reval-
idate in sequence, for this model element. (The xforms-refresh is not performed
since the user interface has not yet been initialized).

After all XForms Models have been initialized, an xforms-model-construct-done
event is dispatched to each model element.

4.2.2 The xforms-model-construct-done Event

Dispatched after the completion of xforms-model-construct processing.

Target: model

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event happens once, no matter how many XForms Models are
present in the containing document, and results in the following, for each form control:

Processing can proceed in one of two different ways depending on whether an instance
in a model exists when the first form control is processed.

If the instance referenced on the form control existed when the first form control was
processed:

1 The binding expression is evaluated to ensure that it points to a node that exists. If this
is not the case then the form control should behave in the same manner as if it had bound
to a model item with the relevant model item property resolved to false.

If the instance referenced on the form control did not exist when the first form control
for the same instance was processed:

1 For the first reference to an instance a default instance is created by following
the rules described below.

a A root instanceData element is created.

b An instance data element node will be created using the binding expression from
the user interface control as the name. If the name is not a valid QName, processing
halts with an exception (4.5.1 The xforms-binding-exception Event).

2 For the second and subsequent references to an instance which was automatically
created the following processing is performed:

a If a matching instance data node is found, the user interface control will be connected
to that element.

4 PROCESSING MODEL

29

b If a matching instance data node is not found, an instance data node will be created
using the binding expression from the user interface control as the name. If the
name is not a valid QName, processing halts with an exception (4.5.1 The xforms-
binding-exception Event).

After all form controls have been initialized, an xforms-ready event is dispatched to
each model element.

4.2.3 The xforms-ready Event

Dispatched as part of xforms-model-construct-done processing.

Target: model

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4.2.4 The xforms-model-destruct Event

Dispatched by the processor to advise of imminent shutdown of the XForms Processor,
which can occur from user action, or from the load XForms Action, or as a result of form
submission.

Target: model

Bubbles: No

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4.3 Interaction Events

4.3.1 The xforms-next and xforms-previous Events

Dispatched in response to: user request to navigate to the next or previous form control.

Target: form control

Bubbles: No

Cancelable: Yes

Context Info: None

4 PROCESSING MODEL

30

The default action for these events results in the following: Navigation according to the
default navigation order. For example, on a keyboard interface, "tab" might generate an
xforms-next event, while "shift+tab" might generate an xforms-previous event.

Navigation is determined on a containing document-wide basis. The host language is re-
sponsible for defining overall navigation order. The following describes a possible technique
based on a navindex attribute, using individual form controls as a navigation unit: The
<group>, <repeat>, and <switch> structures also serve as navigation units, but in-
stead of providing a single navigation point, they create a local navigation context for
child form controls (and possibly other substructures). The navigation sequence is determ-
ined as follows:

1 Form controls that have a navindex specified and assign a positive value to it are
navigated first.

a Outermost form controls are navigated in increasing order of the navindex value.
Values need not be sequential nor must they begin with any particular value. Form
controls that have identical navindex values are to be navigated in document order.

b Ancestor form controls (<group>, <repeat>, and <switch>) establish a local
navigation sequence. All form controls within a local sequence are navigated, in
increasing order of the navindex value, before any outside the local sequence are
navigated. Form controls that have identical navindex values are navigated in
document order.

2 Those form controls that do not specify navindex or supply a value of "0" are navig-
ated next. These form controls are navigated in document order.

3 Those form controls that are disabled, hidden, or not relevant are assigned a relative
order in the overall sequence but do not participate as navigable controls.

4 The navigation sequence past the last form control (or before the first) is undefined.
XForms Processors may cycle back to the first/last control, remove focus from the form,
or other possibilities.

4.3.2 The xforms-focus Event

Dispatched in response to: set focus to a form control.

Target: form control

Bubbles: No

Cancelable: Yes

Context Info: None

The default action for these events results in the following:

focus is given to the target form control if the form control is able to accept focus.

4 PROCESSING MODEL

31

4.3.3 The xforms-help and xforms-hint Events

Dispatched in response to: a user request for help or hint information.

Target: form control

Bubbles: Yes

Cancelable: Yes

Context Info: None

The default action for these events results in the following: If the form control has help/hint
elements supplied, these are used to construct a message that is displayed to the user.
Otherwise, user agents may provide default help or hint messages, but are not required to.

4.3.4 The xforms-refresh Event

Dispatched in response to: a request to update all form controls associated with a particular
XForms Model.

Target: model

Bubbles: Yes

Cancelable: Yes

Context Info: None

The default action for this event results in the following: The user interface reflects the
state of the model, which means that all forms controls reflect for their corresponding
bound instance data:

• its current value

• its validity

• whether it is required, readonly or relevant.

4.3.5 The xforms-revalidate Event

Dispatched in response to: a request to revalidate a particular XForms Model.

Target: model

Bubbles: Yes

Cancelable: Yes

Context Info: None

The default action for this event results in the following:

4 PROCESSING MODEL

32

The default handling for this event must satisfy the following conditions:

1 All instance data nodes in all instance elements in the model are checked against
any specified XML Schema.

2 All instance data nodes in all instance elements in the model are checked against
any bound model item properties which define constraints on the value, i.e. required,
constraint (6 Model Item Properties).

3 The appropriate notification events (4.4.6 The xforms-valid Event, 4.4.7 The xforms-
invalid Event, 4.4.10 The xforms-readonly Event, 4.4.11 The xforms-readwrite
Event, 4.4.12 The xforms-required Event, 4.4.13 The xforms-optional Event, 4.4.14
The xforms-enabled Event, 4.4.15 The xforms-disabled Event) are dispatched to
form controls where the matching model item property evaluates to a different value
than at the start of the processing of this event.

Note:

Prior to the dispatching of the xforms-ready event handler, there are no form
controls bound to instance data, so xforms-valid and other notification events
are not dispatched.

4.3.6 The xforms-recalculate Event

Dispatched in response to: a request to recalculate all calculations associated with a partic-
ular XForms Model.

Target: model

Bubbles: Yes

Cancelable: Yes

Context Info: None

The default action for this event results in the following:

The values of all instance data items match their associated 'calculate' constraints, if any.
All model item properties that can contain computed expressions are resolved.

An XPath expression is bound either to the value or to a model item property (e.g., re-
quired, relevant) of one or more instance nodes. The combination of an XPath ex-
pression with a single instance node's value or model item property is considered as a
single computational unit, a compute, for the purposes of recalculation.

When it is time to recalculate a compute, the XPath expression is evaluated in the context
of the instance node whose value or model item property is associated with the compute.
The XPath expression may reference or refer to another instance node, in which case the
value of the instance node is referenced. Each referenced instance node has as dependents
those computes which directly refer to the instance node. References to the current node's

4 PROCESSING MODEL

33

value in calculate expressions are explicitly ignored, i.e., if an expression associated
with a compute refers to the instance node associated with the compute, then the instance
node does not take itself as a dependent. A compute is computationally dependent on
an instance node (whose value may or may not be computed) if there is a path of dependents
leading from the instance node through zero or more other instance nodes to the compute.
A compute is part of a circular dependency if it is computationally dependent on itself.

Note:

Authors should not refer to the current node's value in calculate expressions be-
cause the effect is not well-defined. Other model item properties, such as required
or readonly, however, are well-defined in the presence of self-references.

When a recalculation event begins, there will be a list L of one or more instance nodes
whose values have been changed, e.g., by user input being propagated to the instance.

1 An XForms Processor should not recalculate computes that are not computationally
dependent on one or more of the elements in L.

2 An XForms Processor should perform only a single recalculation of each compute that
is computationally dependent on one or more of the elements in L.

3 An XForms Processor must recalculate a compute C after recalculating all computes
of instance nodes on which C is computationally dependent. (Equivalently, an XForms
Processor must recalculate a compute C before recalculating any compute that is com-
putationally dependent on the instance node associated with C.)

4 Finally, if a compute is part of a circular dependency and also computationally dependent
on an element in L, then an XForms processor must report an exception (4.5.4 The
xforms-compute-exception Event).

D Recalculation Sequence Algorithm describes one possible method for achieving the
desired recalculation behavior.

4.3.7 The xforms-rebuild Event

Dispatched in response to: a request to rebuild the internal data structures that track com-
putational dependencies within a particular XForms Model.

Target: model

Bubbles: Yes

Cancelable: Yes

Context Info: None

The default action for this event results in the following:

4 PROCESSING MODEL

34

The default action for this event is that the computational dependency data structures are
rebuilt, then the change list L is set to contain references to all instance nodes that have
an associated computational expression such that a full recalculate is performed the next
time the xforms-recalculate event is dispatched to the model.

4.3.8 The xforms-reset Event

Dispatched in response to: a user request to reset the model.

Target: model

Bubbles: Yes

Cancelable: Yes

Context Info: None

The default action for this event results in the following:

The instance data is reset to the tree structure and values it had immediately after having
processed the xforms-ready event. Then, the events xforms-rebuild, xforms-
recalculate, xforms-revalidate and xforms-refresh are dispatched to
the model element in sequence.

4.3.9 The xforms-submit Event

See chapter 11 Submit.

4.4 Notification Events

4.4.1 The DOMActivate Event

Dispatched in response to: the "default action request" for a form control, for instance
pressing a button or hitting enter.

Target: form control

Bubbles: Yes

Cancelable: Yes

Context Info: None

The default action for this event results in the following: None; notification event only.

4.4.2 The xforms-value-changed Event

Dispatched in response to: a confirmed change to an instance data node bound to a form
control, such as when the user navigates away from the form control.

Target: form control

4 PROCESSING MODEL

35

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

Note:

For incremental processing, this specification does not define how often XForms
Processors fire these events. Implementations are expected to optimize processing
(for instance not flashing the entire screen for each character entered, etc.).

Note:

The change to the instance data associated with this event happens before the event
is dispatched.

4.4.3 The xforms-select and xforms-deselect Events

Dispatched in response to: an item in a select, select1, or switch becoming selected
or deselected.

Target: item or case

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4.4.4 The xforms-scroll-first and xforms-scroll-last Events

Dispatched in response to: a setindex action attempting to set an index outside the range
of a repeat.

Target: repeat

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4.4.5 The xforms-insert and xforms-delete Events

Dispatched in response to: A event handler invoking an XForms Action insert or de-
lete, successfully adding or deleting a repeat item..

4 PROCESSING MODEL

36

Target: instance

Bubbles: Yes

Cancelable: No

Context Info: Path expression used for insert/delete (xsd:string).

The default action for these events results in the following: None; notification event only.

4.4.6 The xforms-valid Event

Dispatched in response to: an instance data node becoming valid.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

This event is dispatched whenever the value of the bound instance data node changes,
additionally whenever the bound instance data node becomes valid indirectly, through the
constraint model item property evaluating to true.

4.4.7 The xforms-invalid Event

Dispatched in response to: an instance data node becoming invalid.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

This event is dispatched whenever the value of the bound instance data node changes,
additionally whenever the bound instance data node becomes invalid indirectly, through
the constraint model item property evaluating to false.

4.4.8 The DOMFocusIn Event

Dispatched in response to: a form control receiving focus.

Target: form control

Bubbles: Yes

4 PROCESSING MODEL

37

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4.4.9 The DOMFocusOut Event

Dispatched in response to: a form control losing focus.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4.4.10 The xforms-readonly Event

Dispatched in response to: an instance data node becoming readonly.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

This event is dispatched whenever the value of the bound instance data node changes,
additionally whenever the bound instance data node becomes becomes indirectly, through
the readonly model item property evaluating to true.

4.4.11 The xforms-readwrite Event

Dispatched in response to: an instance data node becoming read-write.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4 PROCESSING MODEL

38

This event is dispatched whenever the value of the bound instance data node changes,
additionally whenever the bound instance data node becomes read-write indirectly, through
the readonly model item property evaluating to false.

4.4.12 The xforms-required Event

Dispatched in response to: an instance data node becoming required.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

This event is dispatched whenever the value of the bound instance data node changes,
additionally whenever the bound instance data node becomes required indirectly, through
the required model item property evaluating to true.

4.4.13 The xforms-optional Event

Dispatched in response to: an instance data node becoming optional.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

This event is dispatched whenever the value of the bound instance data node changes,
additionally whenever the bound instance data node becomes optional indirectly, through
the required model item property evaluating to false.

4.4.14 The xforms-enabled Event

Dispatched in response to: an instance data node becoming enabled.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4 PROCESSING MODEL

39

This event is dispatched whenever the value of the bound instance data node changes,
additionally whenever the bound instance data node becomes enabled indirectly, through
the relevant model item property evaluating to true.

4.4.15 The xforms-disabled Event

Dispatched in response to: an instance data node becoming disabled.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

This event is dispatched whenever the value of the bound instance data node changes,
additionally whenever the bound instance data node becomes disabled indirectly, through
the relevant model item property evaluating to false.

4.4.16 The xforms-in-range Event

Dispatched in response to: the value of an instance data node has changed such that the
value can now be represented by the form control.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

This event is dispatched whenever the value of an instance data node that was not possible
to represent given the constraints specified on a form control has changed such that the
value can now be represented by the form control.

4.4.17 The xforms-out-of-range Event

Dispatched in response to: the value of an instance data node has changed such that the
value can not be represented by the form control.

Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

4 PROCESSING MODEL

40

The default action for this event results in the following: None; notification event only.

This event is dispatched whenever the value of an instance data node can not be represented
given the constraints specified on a form control.

4.4.18 The xforms-submit-done Event

Dispatched in response to: completion of submit processing, including processing any
returned document.

Target: submission

Bubbles: Yes

Cancelable: No

Context Info: None

The default action for this event results in the following: None; notification event only.

4.4.19 The xforms-submit-error Event

Dispatched as an indication of: a failure of the submit process, as defined at 11 Submit

Target: model

Bubbles: Yes

Cancelable: No

Context Info: The submit method URI that failed (xsd:anyURI)

The default action for this event results in the following: None; notification event only.

4.5 Error Indications

Error indications happen as a result of unusual conditions in the XForms Processor. Some
of these are "fatal" errors, which halt processing, and bear the suffix "exception". Others
are simply for notification, and bear the suffix "error". For all events in this section, it is
permissible for the XForms Processor to perform some kind of default handling, for ex-
ample logging error messages to a file.

4.5.1 The xforms-binding-exception Event

Dispatched as an indication of: an illegal binding expression, or a model attribute that
fails to point to the ID of a model element, or a bind attribute that fails to point to the
ID of a bind element, or a submission attribute that fails to point to the ID of a
submission element.

Target: any element that can contain a binding expression

Bubbles: Yes

4 PROCESSING MODEL

41

Cancelable: No

Context Info: None

The default action for this event results in the following: Fatal error.

4.5.2 The xforms-link-exception Event

Dispatched as an indication of: a failure in link traversal of a linking attribute.

Target: model

Bubbles: Yes

Cancelable: No

Context Info: The URI that failed to load (xsd:anyURI)

The default action for this event results in the following: Fatal error.

4.5.3 The xforms-link-error Event

Dispatched as an indication of: a failure in link traversal of a linking attribute, in a situation
not critical to form processing.

Target: model

Bubbles: Yes

Cancelable: No

Context Info: The URI that failed to load (xsd:anyURI)

The default action for this event results in the following: None; notification event only.

4.5.4 The xforms-compute-exception Event

Dispatched as an indication of: an error occurring during XPath evaluation.

Target: model

Bubbles: Yes

Cancelable: No

Context Info: Implementation-specific error string.

The default action for this event results in the following: Fatal error.

4.6 Event Sequencing

The previous sections describe processing associated with individual events. This section
gives the overall sequence of related events that must occur in several common situations.
In the following lists, events that may be fired more than once are prefixed with [n].

4 PROCESSING MODEL

42

4.6.1 For input, secret, textarea, range, or upload Controls

• When the form control is interactively changed, and has the "incremental="true" setting,
the event sequence described at 4.6.7 Sequence: Value Change with Focus Change
may be initiated at implementation dependent intervals.

• When the form control is interactively changed and does not have the "incremental=true"
setting, no events are required to be dispatched, and thus no order is defined.

• When focus changes from the form control and the value has changed, the event sequence
is as described at 4.6.7 Sequence: Value Change with Focus Change.

4.6.2 For output Controls

• No event sequences are defined.

4.6.3 For select or select1 Controls

• When a selection is interactively changed, and the form control has the "increment-
al="true" setting, the event sequence is described at 4.6.6 Sequence: Selection Without
Value Change, which may be followed immediately by the sequence described at 4.6.7
Sequence: Value Change with Focus Change.

• When a selection is interactively changed, and the form control does not have the "in-
cremental="true" setting, the event sequence is described at 4.6.6 Sequence: Selection
Without Value Change.

• When focus changes from the form control and the value has changed, the event sequence
is as described at 4.6.7 Sequence: Value Change with Focus Change.

4.6.4 For trigger Controls

• Activating the form control causes the event sequence defined at 4.6.8 Sequence: Ac-
tivating a Trigger.

4.6.5 For submit Controls

• Activating the form control causes the event sequence defined at 4.6.8 Sequence: Ac-
tivating a Trigger, followed immediately by the event sequence defined at 4.6.9 Se-
quence: Submission.

4.6.6 Sequence: Selection Without Value Change

1 xforms-deselect

2 xforms-select

4 PROCESSING MODEL

43

4.6.7 Sequence: Value Change with Focus Change

1 xforms-recalculate

2 xforms-revalidate

3 [n] xforms-valid/xforms-invalid; xforms-enabled/xforms-disabled; xforms-option-
al/xforms-required; xforms-readonly/xforms-readwrite

4 xforms-value-changed

5 DOMFocusOut

6 DOMFocusIn

7 xforms-refresh

Reevaluation of binding expressions must occur before step 3 above.

4.6.8 Sequence: Activating a Trigger

1 DOMActivate

4.6.9 Sequence: Submission

1 xforms-submit

2 xforms-submit-done or xforms-submit-error

5 Datatypes

This chapter defines the datatypes used in defining an XForms Model.

5.1 XML Schema Built-in Datatypes

XForms supports all XML Schema datatypes except for xsd:duration, xsd:ENTITY,
xsd:ENTITIES, and xsd:NOTATION. Concepts value space, lexical space and con-
straining facets are as specified in [XML Schema part 2]. Certain XML Schema datatypes
have been identified as part of a smaller XForms conformance profile that is being de-
veloped separately, and are marked with an asterisk *. XForms includes datatypes derived
by restriction and derived by list from these base types. XForms Processors must treat the
datatypes listed in the chapter as in-scope without requiring the inclusion of an XML
Schema.

Built-in primitive types:

5 DATATYPES

44

dateTime *
time *
date *
gYearMonth *
gYear *
gMonthDay *
gDay *
gMonth *
string *
boolean *
base64Binary *
hexBinary
float
decimal *
double
anyURI *
QName

Note:

The built-in datatype xsd:duration is not supported, except as an abstract data-
type. Instead, either xforms:dayTimeDuration or xforms:yearMonthDur-
ation should be used.

Built-in derived types:

5 DATATYPES

45

normalizedString
token
language
Name
NCName
ID
IDREF
IDREFS
NMTOKEN
NMTOKENS
integer *
nonPositiveInteger *
negativeInteger *
long *
int *
short *
byte *
nonNegativeInteger *
unsignedLong *
unsignedInt *
unsignedShort *
unsignedByte *
positiveInteger *

5.2 XForms Datatypes

The Schema for XForms derives the following types to facilitate defining model in
XForms.

5.2.1 xforms:listItem

This datatype serves as a base for the xforms:listItems datatype. The value space
for listItem permits one or more characters valid for xsd:string, except white space char-
acters.

5.2.2 xforms:listItems

XForms includes form controls that produce simpleType list content. This is facilitated
by defining a derived-by-list datatype. The value space for listItems is defined by
list-derivation from listItem.

Note:

In most cases, it is better to use markup to distinguish items in a list. See 9.3.3 The
itemset Element.

5 DATATYPES

46

5.2.3 xforms:dayTimeDuration

XForms includes a totally ordered duration datatype that can represent a duration of days,
hours, minutes, and fractional seconds. The value space for this datatype is the set of
fractional second values. This datatype is derived from xsd:duration.

5.2.4 xforms:yearMonthDuration

XForms includes a totally ordered duration datatype that can represent a duration of a
whole number of months and years. The value space for this datatype is the set of integer
month values. This datatype is derived from xsd:duration.

6 Model Item Properties

This chapter defines infoset contributions that can be bound to instance data nodes with
element bind (see 3.3.4 The bind Element). The combination of these contributions to
an instance data node is called a model item. Taken together, these contributions are called
model item properties, and are defined in the following section. In contrast, the term
Schema constraint refers only to XML Schema constraints from the facets of a given
datatype.

6.1 Model Item Property Definitions

Model item properties can be distinguished along various axes.

Computed expressions vs. fixed properties:

• Fixed properties are static values that the XForms Processor evaluates only once. Such
properties consist of literals, and are not subject to XPath evaluation.

• Computed expressions are XPath expressions that provide a value to the XForms Pro-
cessor. Such values are recalculated at certain times as specified by the XForms Pro-
cessing Model (see 4 Processing Model). These expressions encode dynamic properties,
often constraints, such as the dependency among various data items. Computed expres-
sions are not restricted to examining the value of the instance data node to which they
apply. XPath expressions provide the means to traverse the instance data; more complex
computations may be encoded as call-outs to external scripts.

Inheritance rules:

Some model item properties define inheritance rules, in which case the XForms Processor
needs to keep track of two separate values: 1) the local value, which is applied from an
attribute of element bind, and 2) the inherited value, which is determined by combining
the evaluated local value with the evaluated values from ancestor nodes in the instance
data.

Note:

6 MODEL ITEM PROPERTIES

47

The sample recalculation algorithm defined in D Recalculation Sequence Algorithm
is defined to operate only on the local values of a model item property. It assumes
that an implementation propagates the combined values to a node's descendants.

Assigning local values:

Local values are assigned by processing all bind elements in an XForms Model in document
order. It is an error to attempt to set a model item property twice on the same node. The
details of this process are given at 4.2.1 The xforms-model-construct Event.

The following sections list the model item properties available as part of all model items.
For each, the following information is provided:

Description
Computed Expression (yes or no)
Legal Values
Default Value
Inheritance Rules

6.1.1 The type Property

Description: associates a Schema datatype.

Computed Expression: No.

Legal Values: Any xsd:QName representing a datatype definition in an XML Schema.

Default Value: xsd:string.

Inheritance Rules: does not inherit.

The effect of this model item property is the same as placing attribute xsi:type on the
instance data. However, in contrast to xsi:type, type can be added to both elements
and attributes.

Example: Attaching a XML Schema type constraint

<instance>

 <my:person-name>

 <my:first-name />

 <my:last-name xsi:type="my:nonEmptyString" />

 </my:person-name>

</instance>

<bind type="my:nonEmptyString" nodeset="/my:person-name/my:first-name" />

Here, we have illustrated two ways in which an XML Schema type can be associated
with an element.

6 MODEL ITEM PROPERTIES

48

6.1.2 The readonly Property

Description: describes whether the value is restricted from changing.

Computed Expression: Yes.

Legal Values: Any expression that is convertible to XPath boolean with boolean().

Default Value: false(), unless a calculate property is specified, then true().

Inheritance Rules: If any ancestor node evaluates to true, this value is treated as true.
Otherwise, the local value is used.

Note:

This is the equivalent of taking the logical OR of the evaluated readonly property
on the local and every ancestor node.

When evaluating to true, this model item property indicates that the XForms Processor
should not allow any changes to the bound instance data node.

In addition to restricting value changes, the readonly model item property provides a
hint to the XForms user interface. Form controls bound to instance data with the readonly
model item property should indicate that entering or changing the value is not allowed.
This specification does not define any effect on visibility, focus, or navigation order.

Example: Attaching a readonly property

<instance>

 <my:person-name>

 <my:first-name>Roland</my:first-name>

 <my:last-name/>

 </my:person-name>

</instance>

<bind nodeset="/my:person-name/my:first-name" readonly="true()"/>

Here, we have associated a readonly property with an element.

6.1.3 The required Property

Description: describes whether a value is required before the instance data is submitted.

Computed Expression: Yes.

Legal Values: Any expression that is convertible to XPath boolean with boolean().

Default Value: false().

Inheritance Rules: does not inherit.

6 MODEL ITEM PROPERTIES

49

A form may require certain values, and this requirement may be dynamic. When evaluating
to true, this model item property indicates that a non-empty instance data node is required
before a submission of instance data can occur. Non-empty is defined as:

1 If the bound instance data node is an element, the element must not have the xsi:nil
attribute set to true.

2 The value of the bound instance data node must be convertible to an XPath string
with a length greater than zero.

Except as noted below, the required model item property does not provide a hint to
the XForms user interface regarding visibility, focus, or navigation order. XForms authors
are strongly encouraged to make sure that form controls that accept required data are
visible. An XForms Processor may provide an indication that a form control is required,
and may provide immediate feedback, including limiting navigation. Chapter 4 Processing
Model contains details on how the XForms Processor enforces required values.

Example: Attaching a required property

<instance>

 <my:person-name>

 <my:first-name>Roland</my:first-name>

 <my:last-name />

 </my:person-name>

</instance>

<bind nodeset="/my:person-name/my:last-name" required="true()"/>

Here, we have associated a required property with element my:last-name to in-
dicate that a value must be supplied.

Note:

XML Schema has a similarly named concept with use="required|option-
al|prohibited". This is different than the XForms Model item property, in two
ways: 1) use applies only to attributes, while XForms required applies to any
node. 2) use is concerned with whether the entire attribute must be specified (without
regard to value), while required determines whether a value is required of the
node before submission.

6.1.4 The relevant Property

Description: indicates whether the model item is currently relevant. Instance data nodes
with this property evaluating to false are not serialized for submission.

Computed Expression: Yes.

Legal Values: Any expression that is convertible to XPath boolean with boolean().

6 MODEL ITEM PROPERTIES

50

Default Value: true().

Inheritance Rules: If any ancestor node evaluates to XPath false, this value is treated
as false. Otherwise, the local value is used.

Note:

This is the equivalent of taking the logical AND of the evaluated relevant property
on the local and every ancestor node.

Many forms have data entry sections that depend on other conditions. For example, a form
might ask whether the respondent owns a car. It is only appropriate to ask for further in-
formation about their car if they have indicated that they own one.

The relevant model item property provides hints to the XForms user interface regarding
visibility, focus, and navigation order. In general, when true, associated form controls
should be made visible. When false, associated form controls should be made unavail-
able, removed from the navigation order, and not allowed focus.

Example: Attaching a relevant property

<instance>

 <my:order>

 <my:item>

 <my:amount />

 <my:discount>100</my:discount>

 </my:item>

 </my:order>

</instance>

<bind nodeset="my:item/my:discount" readonly="true()"

 relevant="../my:amount > 1000"/>

Here, we have associated a relevant property with element my:discount to indicate
a discount is relevant when the order amount is greater than 1000.

The following table shows the user interface interaction between required and relev-
ant.

required="false()"required="true()"

The form control (and any
children) must be visible or

The form control (and any chil-
dren) must be visible or available

relev-

ant="true()"
available to the user. Theto the user. The XForms user in-
XForms user interface mayterface may indicate that a value

is required. indicate that a value is op-
tional.

The form control (and any
children) must be hidden or

The form control (and any chil-
dren) must be hidden or unavail-

relev-

ant="false()"

6 MODEL ITEM PROPERTIES

51

unavailable to the user. En-
tering a value or obtaining

able to the user. Entering a value
or obtaining focus should not be

focus should not be al-
lowed.

allowed. The XForms user inter-
face may indicate that should the
form control become relevant, a
value would be required.

6.1.5 The calculate Property

Description: supplies an expression used to calculate the value of the associated instance
data node.

Computed Expression: Yes.

Legal Values: Any XPath expression.

Default Value: none.

Inheritance Rules: does not inherit.

An XForms Model may include model items that are computed from other values. For
example, the sum over line items for quantity times unit price, or the amount of tax to be
paid on an order. Such computed value can be expressed as a computed expression using
the values of other model items. Chapter 4 Processing Model contains details of when
and how the calculation is performed.

Example: Attaching a calculate property

<instance>

 <my:order>

 <my:item>

 <my:amount />

 <my:discount />

 </my:item>

 </my:order>

</instance>

<bind nodeset="my:item/my:discount" calculate="../my:amount * 0.1"

 relevant="../my:amount > 1000"/>

Here, we have associated a relevant property with element my:discount to indicate
a discount of 10% is relevant when the order amount is greater than 1000.

6.1.6 The constraint Property

Description: specifies a predicate that needs to be satisfied for the associated instance data
node to be considered valid.

Computed Expression: Yes.

6 MODEL ITEM PROPERTIES

52

Legal Values: Any expression that is convertible to XPath boolean with boolean().

Default Value: true().

Inheritance Rules: does not inherit.

When evaluating to XPath false, the associated model item is not valid; the converse
is not necessarily true. Chapter 4 Processing Model contains details of when and how the
constraint is calculated as well as when validation is performed.

Example: Attaching a constraint property

<instance>

 <my:range>

 <my:from />

 <my:to />

 </my:range>

</instance>

<bind nodeset="my:to" constraint=". > ../my:from" />

Here, a constraint property associated with element my:to indicates that its value
must be greater than that of element my:from.

Note:

Specifying minimum and maximum occurrences for nodes in the instance data can
be achieved by using the count() function within a constraint property.

6.1.7 The p3ptype Property

Description: Attaches a P3P data element to an instance data node, indicating the specific
kind of data collected there.

Computed Expression: No.

Legal Values: xsd:string.

Default Value: none

Inheritance Rules: does not inherit.

This model item property holds a description of the kind of data collected by the associated
instance data node, based on the P3P datatype system [P3P 1.0]. This information may be
used to enhance the form-fill experience, for example by supplying previously-known
data.

Example: Attaching a type constraint using Binding

6 MODEL ITEM PROPERTIES

53

<instance>

 <my:person-name>

 <my:first-name />

 <my:last-name />

 </my:person-name>

</instance>

<bind type="my:nonEmptyString" nodeset="my:first-name"

 p3ptype="user.personname.given"/>

Here, we have attached both XML Schema and P3P type information to element first-
name via element bind.

6.2 Schema Constraints

Chapter 5 Datatypes described how XForms uses the XML Schema datatype system to
constrain the value space of data values collected by an XForms Model. Such datatype
constraints can be provided via an XML Schema. Alternatively, this section lists various
mechanisms for attaching type constraints to instance data. Attributes xsi:schemaLoca-
tion and xsi:noNamespaceSchemaLocation are ignored for purposes for locating
a Schema.

6.2.1 Atomic Datatype

The XForms Processing Model applies XML Schema facets as part of the validation pro-
cess. At the simplest level, it is necessary to associate a set of facets (through an XML
Schema datatype) with a model item. This has the effect of restricting the allowable values
of the associated instance data node to valid representations of the lexical space of the
datatype.

The set of facets associated with a model item must be determined by the following list,
as if it were processed in the given order. When multiple datatype restrictions apply to the
same model item, the combination of all given restrictions must apply. Note that it is
possible to produce a combination of restrictions that is impossible to satisfy; authors are
encouraged to avoid this practice.

1 An XML Schema associated with the instance data.

2 An XML Schema xsi:type attribute in the instance data.

3 An XForms type constraint associated with the instance data node using XForms
binding.

4 If no type constraint is provided, the instance data node defaults to
type="xsd:string" (default to string rule).

The following declares a datatype based on xsd:string with an additional constraining
facet.

6 MODEL ITEM PROPERTIES

54

Example: Type Constraint Using XML Schema

<xsd:simpleType name="nonEmptyString">

 <xsd:restriction base="xsd:string">

 <xsd:minLength value="1"/>

 </xsd:restriction>

</xsd:simpleType>

This new datatype would then be associated with one or more model items through one
of the methods outlined here.

Example: Attaching A Type Constraint

<my:first-name xsi:type="my:nonEmptyString"/>

This defines element first-name to be of type my:nonEmptyString.

Example: Attaching Type Constraint Using XForms Binding

<instance>

 <my:first-name />

</instance>

<bind type="my:nonEmptyString" nodeset="/my:first-name"/>

Here, we have attached type information to element first-name via element bind.
Thus the XForms author can extend external schemas without having the ability to
change them.

7 XPath Expressions in XForms

XForms uses XPath to address instance data nodes in binding expressions, to express
constraints, and to specify calculations. XPath expressions that are not syntactically valid,
including attempted calls to undefined functions, result in an exception (4.5.4 The xforms-
compute-exception Event), except for binding expressions, which produce a different
exception (4.5.1 The xforms-binding-exception Event).

7.1 XPath Datatypes

XPath datatypes are used only in binding expressions and computed expressions. XForms
uses XPath datatypes boolean, string, number, and node-set. A future version
of XForms is expected to use XPath 2.0, which includes support for XML Schema data-
types.

7 XPATH EXPRESSIONS IN XFORMS

55

7.2 Feature string for the hasFeature method call

For this version of the XForms specification, the feature string for the [DOM2 Core] DO-
MImplementation interface hasFeature method call is "org.w3c.xforms.dom"
and the version string is "1.0".

7.3 Instance Data

For each model element, the XForms Processor maintains the state in an internal structure
called instance data that conforms to the XPath Data Model [XPath 1.0]. XForms Processors
that implement DOM must provide DOM access to this instance data via the interface
defined below.

Note:

Instance data always has a single root element, and thus corresponds to a DOM
Document.

The IDL for this interface follows:

#include "dom.idl"

pragma prefix "w3c.org"

module xforms {

 interface XFormsModelElement : dom::Element {

 dom::Document getInstanceDocument(in dom::DOMString instanceID)

 raises(dom::DOMException);

 void rebuild();

 void recalculate();

 void revalidate();

 void refresh();

 };

};

7.3.1 The getInstanceDocument() Method

This method returns a DOM Document that corresponds to the instance data associated
with the instance element containing an ID matching the instance-id parameter.
If there is no matching instance data, a DOMException is thrown.

7.3.2 The rebuild() Method

This method signals the XForms Processor to rebuild any internal data structures used to
track computational dependencies within this XForms Model. This method takes no
parameters and raises no exceptions.

7.3.3 The recalculate() Method

This method signals the XForms Processor to perform a full recalculation of this XForms
Model. This method takes no parameters and raises no exceptions.

7 XPATH EXPRESSIONS IN XFORMS

56

Note:

Script invocation of recalculate() is not necessarily equivalent to performing
the recalculate action handler. Though the script is assumed to have modified instance
data prior to invoking recalculate(), the DOM mutations are not cached. Thus,
a full recalculation is necessary to ensure the proper changes are effected throughout
the XForms Model.

7.3.4 The revalidate() Method

This method signals the XForms Processor to perform a full revalidation of this XForms
Model. This method takes no parameters and raises no exceptions.

7.3.5 The refresh() Method

This method signals the XForms Processor to perform a full refresh of form controls bound
to instance nodes within this XForms Model. This method takes no parameters and raises
no exceptions.

7.4 Evaluation Context

Within XForms, XPath expressions reference abstract instance data (using the "path"
portion of XPath), instead of a concrete XML document. This reference is called a binding
expression in this specification. Every XPath expression requires an evaluation context.
The following rules are used in determining evaluation context when evaluating XPath
expressions as part of XForms:

1 The context node for outermost binding elements is the top-level element node, or the
single node returned by /*. A binding element is any element that is explicitly allowed
to have a binding expression attribute. A binding element is "outermost" when the
node-set returned by the XPath expression ancestor::* includes no binding element
nodes.

2 The context node for non-outermost binding elements is the first node of the binding
expression of the immediately enclosing element. An element is "immediately enclos-
ing" when it is the first binding element node in the node-set returned by the XPath
expression ancestor::*. This is also referred to as "scoped resolution".

3 The context node always resides within the context model, which is determined choosing
the first item that applies from this list:

a If a model attribute is present on the binding element, the attribute determines the
context model.

b If the binding element has an immediately enclosing binding element, the context
model of the immediately enclosing binding element is used.

c The first model in document order is used.

7 XPATH EXPRESSIONS IN XFORMS

57

4 The context node for computed expressions (occurring on element bind) is the node
currently being processed.

5 For Single-Node binding expressions, the context size and position are 1. For Nodeset
binding expressions, the context size is the size of the node-set, and the context position
is the document order position of the node currently being processed within the node-
set.

6 No variable bindings are in place.

7 The available function library is defined below, plus any functions supplied by the im-
plementation. Extension functions required for operation of the form should be declared,
as described at 7.12 Extension Functions.

8 Any namespace declarations in scope for the attribute that defines the expression are
applied to the expression.

Example: Binding Expression Context Nodes

<group ref="level2/level3">

 <select1 ref="@attr" ... />

</group>

In this example, the group has a binding expression of level2/level3. According
to the rules above, this outermost element node would have a context node of /level1,
which is the top-level element node of the instance data. The select1 form control then
inherits a context node from the parent group. Matching instance data, represented as
serialized XML, follows:

Example: Sample XML Instance Data

<level1>

 <level2>

 <level3 attr="xyz"/>

 </level2>

</level1>

7.5 Binding Expressions

A binding expression is an XPath PathExpr used in binding a model item property to one
or more instance nodes, or to bind a form control to instance data, or to specify the node
or node set for operation by an action. By default, all binding expressions refer to the first
instance within the context model. This behavior can be changed with the instance()
function.

7 XPATH EXPRESSIONS IN XFORMS

58

7.5.1 Dynamic Dependencies

Not every possible XPath expression is acceptable as a binding expression. In particular,
there are restrictions on model binding expressions that create dynamic dependencies,
which are defined as follows:

An XPath predicate (in square brackets) is a possibly implicit boolean test. A dynamic
dependency exists on any predicate unless all terms in the test are "fixed", where fixed
means either a constant, or a value that will not change between operations explicitly
defined as rebuilding computational dependencies.

Note:

For purposes of determining dynamic dependencies, the following subexpressions
are considered fixed: position(), last(), count(), and property(). This
is because the specification mandates a dependency rebuild after any event that could
change the values returned by these functions.

Another dynamic dependency is any use of the id() function, unless both the parameter
to the function and the matching attribute of type xsd:ID are fixed. In the same way, the
instance() function is dynamic unless the parameter to the function is fixed.

XPath variables that change in value from one recalculate to the next would also create
dynamic dependencies (though XForms 1.0 defines an empty variable context for all XPath
expressions).

Authors that define extension functions are encouraged to follow these rules.

7.5.2 Model Binding Expressions

A model binding expression is a kind of binding expression that can be used to declare
model item properties, and is used in attributes of the bind element.

Dynamic dependencies in model binding expressions will generally require manual rebuild-
ing of dependencies.

7.5.3 UI Binding Expressions

Binding references can be used to bind form controls to the underlying instance data as
described here. Different attribute names, ref and nodeset distinguish between a single
node and a node-set respectively. See 3.2.3 Single-Node Binding Attributes and 3.2.4
Node-Set Binding Attributes.

Dynamic dependences are allowed in UI binding expressions based on the conformance
profile.

7.5.4 UI Binding in other XML vocabularies

The XForms binding mechanism allows other XML vocabularies to bind user interface
controls to an XForms Model using any of the techniques shown here. As an example,

7 XPATH EXPRESSIONS IN XFORMS

59

XForms binding attribute bind might be used within XHTML 1.x user interface controls
as shown below. See 3.2.3 Single-Node Binding Attributes and 3.2.4 Node-Set Binding
Attributes.

Example: XForms Binding In XHTML 1.x User Interface Controls

<html:input type="text" name="..." xforms:bind="fn"/>

7.5.5 Binding Examples

Consider the following document with the one-and-only XForms model:

<xforms:model id="orders">

 <xforms:instance xmlns="">

 <orderForm>

 <shipTo>

 <firstName>John</firstName>

 </shipTo>

 </orderForm>

 </xforms:instance>

 <xforms:bind nodeset="/orderForm/shipTo/firstName" id="fn" />

</xforms:model>

The following examples show three ways of binding user interface control
xforms:input to instance element firstName declared in the model shown above.

Example: UI Binding Using Attribute ref

<xforms:input ref="/orderForm/shipTo/firstName">...

Example: UI Binding Using Attribute bind

<xforms:input bind="fn">...

Example: Specifies Model Containing The Instance Explicitly

<xforms:input model="orders" ref="/orderForm/shipTo/firstName">...

7.6 XForms Core Function Library

The XForms Core Function Library includes the entire [XPath 1.0] Core Function Library,
including operations on node-sets, strings, numbers, and booleans.

These following sections define additional required functions for use within XForms.

7 XPATH EXPRESSIONS IN XFORMS

60

7.7 Boolean Functions

7.7.1 The boolean-from-string() Function

boolean boolean-from-string(string)

Function boolean-from-string returns true if the required parameter string
is "true" or "1", or false if parameter string is "false", or "0". This is useful when
referencing a Schema xsd:boolean datatype in an XPath expression. If the parameter
string matches none of the above strings, according to a case-insensitive comparison,
processing stops with an exception (4.5.4 The xforms-compute-exception Event).

7.7.2 The if() Function

string if(boolean, string, string)

Function if evaluates the first parameter as boolean, returning the second parameter when
true, otherwise the third parameter.

7.8 Number Functions

7.8.1 The avg() Function

number avg(node-set)

Function avg returns the arithmetic average of the result of converting the string-values
of each node in the argument node-set to a number. The sum is computed with sum(),
and divided with div by the value computed with count(). If the parameter is an empty
node-set, the return value is NaN.

7.8.2 The min() Function

number min(node-set)

Function min returns the minimum value of the result of converting the string-values of
each node in argument node-set to a number. "Minimum" is determined with the <
operator. If the parameter is an empty node-set, or if any of the nodes evaluate to NaN,
the return value is NaN.

7.8.3 The max() Function

number max(node-set)

Function max returns the maximum value of the result of converting the string-values of
each node in argument node-set to a number. "Maximum" is determined with the <
operator. If the parameter is an empty node-set, or if any of the nodes evaluate to NaN,
the return value is NaN.

7 XPATH EXPRESSIONS IN XFORMS

61

7.8.4 The count-non-empty() Function

number count-non-empty(node-set)

Function count-non-empty returns the number of non-empty nodes in argument
node-set. A node is considered non-empty if it is convertible into a string with a
greater-than zero length.

7.8.5 The index() Function

number index(string)

Function index takes a string argument that is the IDREF of a repeat and returns the
current 1-based position of the repeat index for the identified repeat—see 9.3.1 The
repeat Element for details on repeat and its associated repeat index. If the specified
argument does not identify a repeat, processing stops with an exception (4.5.4 The
xforms-compute-exception Event).

Example: index

<xforms:trigger>

 <xforms:label>Add to Shopping Cart</xforms:label>

 <xforms:insert ev:event="DOMActivate" position="after"

 nodeset="items/item" at="index('cartUI')"/>

</xforms:trigger>

7.9 String Functions

7.9.1 The property() Function

string property(string)

Function property returns the XForms property named by the string parameter.

The following properties are available for reading (but not modification).

version

version is defined as the string "1.0" for XForms 1.0.

conformance-level

conformance-level strings are defined in 12 Conformance.

Example: property

7 XPATH EXPRESSIONS IN XFORMS

62

<xforms:instance>

 ...

 <xforms:bind nodeset="message"

 calculate="concat('created with XForms ', property('version'))"/> ...

</xforms:instance>

7.10 Date and Time Functions

Note:

The following XML Schema datatypes do not have specific functions for manipulation
within XForms expressions: xsd:time, xsd:gYearMonth, xsd:gYear,
xsd:gMonthDay, xsd:gDay, xsd:gMonth. Extension functions (7.12 Extension
Functions) may be used to perform needed operations on these datatypes.

7.10.1 The now() Function

string now()

The now function returns the current system date and time as a string value in the canon-
ical XML Schema xsd:dateTime format. If time zone information is available, it is
included (normalized to UTC). If no time zone information is available, an implementation
default is used.

Note:

Attaching a calculation of "now()" to an instance data node would not result in a
stream of continuous recalculations of the XForms Model.

7.10.2 The days-from-date() Function

number days-from-date(string)

This function returns a whole number of days, according to the following rules:

If the string parameter represents a legal lexical xsd:date or xsd:dateTime, the return
value is equal to the number of days difference between the specified date and 1970-
01-01. Hour, minute, and second components are ignored. Any other input parameter
causes a return value of NaN.

Examples:

days-from-date("2002-01-01") returns 11688
days-from-date("1969-12-31") returns -1

7.10.3 The seconds-from-dateTime() Function

number seconds-from-dateTime(string)

7 XPATH EXPRESSIONS IN XFORMS

63

This function returns a possibly fractional number of seconds, according to the following
rules:

If the string parameter represents a legal lexical xsd:dateTime, the return value is
equal to the number of seconds difference between the specified dateTime and 1970-
01-01T00:00:00Z. If no time zone is specified, an implementation default is used.
Any other input string parameter causes a return value of NaN.

7.10.4 The seconds() Function

number seconds(string)

This function returns a possibly fractional number of seconds, according to the following
rules:

If the string parameter represents a legal lexical xsd:duration, the return value is
equal to the number specified in the seconds component plus 60 * the number specified
in the minutes component, plus 60 * 60 * the number specified in the hours component,
plus 60 * 60 * 24 * the number specified in the days component. The sign of the result
will match the sign of the duration. If no time zone is specified, an implementation default
is used. Year and month components, if present, are ignored. Any other input parameter
causes a return value of NaN.

Examples:

seconds("P1Y2M") returns 0
seconds("P3DT10H30M1.5S") returns 297001.5
seconds("3") returns NaN

Note:

Even though this function is defined based on a lexical xsd:duration, it is intended
for use only with derived-from-xsd:duration datatypes, specifically
xforms:dayTimeDuration.

7.10.5 The months() Function

number months(string)

This function returns a whole number of months, according to the following rules:

If the string parameter represents a legal lexical xsd:duration, the return value is
equal to the number specified in the months component plus 12 * the number specified in
the years component. The sign of the result will match the sign of the duration. Day, hour,
minute, and second components, if present, are ignored. Any other input parameter causes
a return value of NaN.

Examples:

7 XPATH EXPRESSIONS IN XFORMS

64

months("P1Y2M") returns 14
months("-P19M") returns -19

Note:

Even though this function is defined based on a lexical xsd:duration, it is intended
for use only with derived-from-xsd:duration datatypes, specifically
xforms:yearMonthDuration.

7.11 Node-set Functions

7.11.1 The instance() Function

node-set instance(string)

An XForms Model can contain more that one instance. This function allows access to in-
stance data, within the same XForms Model, but outside the instance data containing the
context node.

The argument is converted to a string as if by a call to the string function. This string
is treated as an IDREF, which is matched against instance elements in the containing
document. If a match is located, and the matching instance data is associated with the
same XForms Model as the current context node, this function returns a node-set containing
just the root element node (also called the document element node) of the referenced in-
stance data. In all other cases, an empty node-set is returned.

Example:

For instance data corresponding to this XML:

<xforms:instance xmlns="" id="orderform">

 <orderForm>

 <shipTo>

 <firstName>John</firstName>

 </shipTo>

 </orderForm>

</xforms:instance>

The following expression selects the firstName node. Note that the instance function
returns an element node, effectively replacing the leftmost location step from the path:

ref="instance('orderform')/shipTo/firstName"

7.12 Extension Functions

XForms documents may use additional XPath extension functions beyond those described
here. A number of useful community extensions are defined at [EXSLT]. The names of

7 XPATH EXPRESSIONS IN XFORMS

65

any such extension functions must be declared in attribute functions on element
model. Such declarations are used by the XForms Processor to check against available
extension functions. XForms Processors perform this check at the time the document is
loaded, and stop processing by signaling an exception (4.5.4 The xforms-compute-excep-
tion Event) if the XForms document declares an extension function for which the processor
does not have an implementation.

Note:

Explicitly declaring extension functions enables XForms Processors to detect the use
of unimplemented extension functions at document load-time, rather than throwing
a fatal error during user interaction. Failure by authors to declare extension functions
will result in an XForms Processor potentially halting processing during user interac-
tion with a fatal error.

8 Form Controls

8.1 The XForms Form Controls Module

Form controls are declared using markup elements, and their behavior refined via markup
attributes.

Minimal Content ModelAttributesElement
label, (UI Common)*Common, UI Common, Single Node Bind-

ing, inputmode (xsd:string), incremental
(xsd:boolean)

input

label, (UI Common)*Common, UI Common, Single Node Bind-
ing, inputmode (xsd:string), incremental
(xsd:boolean)

secret

label, (UI Common)*Common, UI Common, Single Node Bind-
ing, inputmode (xsd:string), incremental
(xsd:boolean)

textarea

label?Common, Single Node Binding (optional),
appearance ("full"|"compact"|"minim-

output

al"|xforms:QNameButNotNCNAME), value
(XPathExpression)

label, filename?, media-
type?, (UI Common)*

Common, UI Common, Single Node Bind-
ing, mediatype (xsd:string), incremental
(xsd:boolean)

upload

label, (UI Common)*Common, UI Common, Single Node Bind-
ing, start (xsd:string), end (xsd:string), step
(xsd:string), incremental (xsd:boolean)

range

label, (UI Common)*Common, UI Common, Single Node Binding
(optional)

trigger

label, (UI Common)*Common, UI Common, Single Node Binding
(optional), submission (xsd:IDREF)

submit

8 FORM CONTROLS

66

label, (List UI Common)+,
(UI Common)*

Common, UI Common, Single Node Bind-
ing, selection ("open" | "closed"), increment-
al (xsd:boolean)

select

label, (List UI Common)+,
(UI Common)*

Common, UI Common, Single Node Bind-
ing, selection ("open" | "closed"), increment-
al (xsd:boolean)

select1

label?, (List UI Common)+Commonchoices
label, value, (UI Com-
mon)*

Commonitem

EMPTYCommon, Single Node Bindingfilename
EMPTYCommon, Single Node Bindingmediatype
(PCDATA|ANY)*Common, Single Node Binding (optional)value
(PCDATA|(UI Inline))*Common, Single Node Binding (optional),

Linking
label

(PCDATA|(UI Inline))*Common, Single Node Binding (optional),
Linking

help

(PCDATA|(UI Inline))*Common, Single Node Binding (optional),
Linking

hint

(PCDATA|(UI Inline))*Common, Single Node Binding (optional),
Linking

alert

See also: 9.3.3 The itemset Element.

Note:

Unless bound to form controls, instance data nodes are not presented to the user;
consequently, there is no need for a form control corresponding to HTML input
type="hidden".

The following attributes are common to many user-interface related XForms elements,
here called the UI Common attribute group.

AttributesElement
appearance ("full"|"compact"|"minimal"|QName-but-not-NCName)(various)

appearance

Optional attribute to define an appearance hint.

Note:

A host language is expected to add attributes such as xml:lang as well as an attrib-
ute, named class, that holds a list of strings that can be matched by CSS class se-
lectors.

Further, a host language must provide a way to indicate overall navigation order
among form controls and other elements included in the host language, as well as

8 FORM CONTROLS

67

keyboard or direct access navigation to specific elements. One such proposal is to
uses a pair of attributes named navindex and accesskey, defined as follows:

navindex

Optional attribute is a non-negative integer in the range of 0-32767 used to
define the navigation sequence. This gives the author control over the sequence
in which form controls are traversed. The default navigation order is specified
in the chapter 4 Processing Model.

accesskey

Optional attribute defines a shortcut for moving the input focus directly to a
particular form control. The value of this is a single character which when
pressed together with a platform specific modifier key (e.g., the alt key) results
in the focus being set to this form control.

The user agent must provide a means of identifying the accesskeys that can be
used in a presentation. This may be accomplished in different ways by different
implementations, for example through direct interaction with the application
or via the user's guide. The accesskey requested by the author might not be
made available by the player (for example it may not exist on the device used,
or it may be used by the player itself). Therefore the user agent should make
the specified key available, but may map the accesskey to a different interaction
behavior.

Additionally, this module defines the following content sets:

Minimal Content ModelContent Set
(help|hint|alert|Action)*UI Common
(choices|item|itemset)+List UI Common
(input|secret|textarea|output|upload|range|trigger|submit|se-
lect|select1)*

Form Controls

(output)*UI Inline

As shown above, the XML Events module adds the Actions content set into the UI Common
content set. A host language should add inline markup to the Inline content set. When the
XForms Extension module is present, it too should be included in the UI Common content
set.

8.1.1 Implementation Requirements Common to All Form Controls

XForms user interface controls are bound to the underlying instance data using binding
attributes as defined in the chapter 6 Model Item Properties.

Form controls enable accessibility by taking a uniform approach to such features as labels,
help text, navigation, and keyboard shortcuts. Internationalization issues are addressed by
following the same design principles as in XHTML. All form controls are suitable for
styling as aural or visual media.

8 FORM CONTROLS

68

Form controls encapsulate high-level semantics without sacrificing the ability to deliver
real implementations. For instance, the form control select enables the user to select
items from a set. These form controls distinguish the functional aspects of the underlying
control from the presentational and behavioral aspects. This separation enables the expres-
sion of the intent underlying a particular form control—see [AUI97] for a definition of
such high-level user interaction primitives.

Form controls when rendered display the underlying data values to which they are bound.
While the data presented to the user through a form control must directly correspond to
the bound instance data, the display representation is not required to match the lexical
value. For example, user agents should apply appropriate conventions to the display of
dates, times, durations and numeric values including separator characters.

All form controls must meet the following implementation requirements:

• Form controls that write simpleContent to instance data must do so exactly as defined
by the XForms Action 10.1.9 The setvalue Element

• All form controls that read simpleContent instance data must do so as follows:

 Element nodes: if text child nodes are present, returns the string-value of the first
text child node. Otherwise, returns "" (the empty string)

 Attribute nodes: returns the string-value of the node.

 Text nodes: returns the string-value of the node.

 Namespace, processing instruction, comment, and the XPath root node: behavior is
undefined.

• Form controls must distinguish rendering between valid and invalid states. Control of
this behavior should be made available to stylesheets.

• Form controls must indicate when the bound instance data contains a value the form
control is not capable of rendering. Control of this behavior should be made available
to stylesheets.

• Form controls must render upon request an explanation of the current state of a form
control, including validity and associated model item properties. Control of this behavior
should be made available to stylesheets.

• Form controls must provide a default explanation for the above when no user-specified
explanation is available.

Sections in this chapter define the various form controls by specifying the following:

8 FORM CONTROLS

69

Description
Common Attributes
Special Attributes
Examples
Data Binding Restrictions
Implementation Requirements

8.1.2 The input Element

Description: This form control enables free-form data entry.

Common Attributes: Common, UI Common, Single Node UI Binding

Special Attributes:

inputmode

This form control accepts an input mode hint. E Input Modes.

incremental

when true, this form control will generate additional xforms-value-changed
events. The default value for this attribute is false.

Example:

<input ref="order/shipTo/street" class="streetAddress">

 <label>Street</label>

 <hint>Please enter the number and street name</hint>

</input>

In the above, the class attribute can be used by a style sheet to specify the display size
of the form control. Note that the constraints on how much text can be input are obtained
from the underlying XForms Model definition and not from these display properties.

A graphical browser might render the above example as follows:

Data Binding Restrictions: Binds to any simpleContent (except xsd:base64Binary,
xsd:hexBinary or any datatype derived from these).

Implementation Requirements: Must allow entry of a lexical value for the bound datatype.
Implementations should provide a convenient means for entry of datatypes and take into
account localization and internationalization issues such as representation of numbers.
For example, an input bound to an instance data node of type xsd:date might provide

8 FORM CONTROLS

70

a calendar control to enter dates; similarly, an input control bound to of type boolean
might be rendered as a checkbox.

<input ref="order/shipDate">

 <label>Ship By</label>

 <hint>Please specify the ship date for this order.</hint>

</input>

A graphical browser might render the above example as follows:

The user can type a date into the text edit box, or press the button to open a calendar:

8.1.3 The secret Element

Description: This form control is used to provide the user with the ability to supply inform-
ation to the system in a manner that makes it difficult for someone, other than the user,
who may be observing the process to discern the value that is being supplied. A common
use is for password entry.

Common Attributes: Common, UI Common, Single Node Binding

Special Attributes:

inputmode

This form control accepts an input mode hint. E Input Modes.

incremental

when true, this form control will generate additional xforms-value-changed
events. The default value for this attribute is false.

8 FORM CONTROLS

71

Example:

Example: Password Entry

<secret ref="/login/password">

 <label>Password</label>

 <hint>The password you enter will not be displayed.</hint>

</secret>

A graphical browser might render this form control as follows:

Data Binding Restrictions: Identical to input.

Implementation Requirements: Implementations, including accessibility aids, must obscure
the value being entered into this form control. One possible approach would be to render
a "*" or similar character instead of the actual characters entered. Note that this provides
only a casual level of security; truly sensitive information will require additional security
measures outside the scope of XForms.

8.1.4 The textarea Element

Description: This form control enables free-form data entry and is intended for use in en-
tering multiline content, e.g., the body of an email message.

Common Attributes: Common, UI Common, Single Node Binding

Special Attributes:

inputmode

This form control accepts an input mode hint. E Input Modes.

incremental

when true, this form control will generate additional xforms-value-changed
events. The default value for this attribute is false.

Example:

Example: Email Message Body

<textarea ref="message/body" class="messageBody">

 <label>Message Body</label>

 <hint>Enter the text of your message here</hint>

</textarea>

8 FORM CONTROLS

72

In the above, the class attribute can be used by a style sheet to specify the display size
of the form control. Note that the constraints on how much text can be input are obtained
from the underlying XForms Model definition and not from these display properties.

A graphical browser might render the above example as follows:

Data Binding Restrictions: Binds to xsd:string or any derived simpleContent.

Implementation Requirements: Must allow entry of a lexical value for the bound datatype,
including multiple lines of text.

8.1.5 The output Element

Description: This form control renders a value from the instance data, but provides no
means for entering or changing data. It is used to display values from the instance, and is
treated as display:inline for purposes of layout. Element output can be used to
display the value at a particular location in the instance by using a binding expression; it
can also be used to display the result of evaluating an XPath expression by specifying the
XPath expression to be evaluated via attribute value instead of ref. Note that attributes
ref and value on element output are mutually exclusive.

Common Attributes: Common, Single Node Binding (optional)

Special Attributes:

appearance

This form control does not use the UI Common attribute group, but nevertheless still
contains an appearance attribute, as defined above.

value

An XPath expression to be evaluated. The result of the evaluation is rendered by the
form control. If binding attributes are present to select a node, this attribute has no
effect. The XPath expression is re-evaluated whenever there is a change in any node
that the expression refers to.

Example:

Example: Explanatory Message

8 FORM CONTROLS

73

I charged you -

<output ref="order/totalPrice"/>

- and here is why:

A graphical browser might render an output form control as follows:

Data Binding Restrictions: Binds to any simpleContent.

Implementation Requirements: Must allow display of a lexical value for the bound datatype.
Implementations should provide a convenient means for display of datatypes and take into
account localization and internationalization issues such as representation of numbers.

8.1.6 The upload Element

Description: This form control enables the common feature found on Web sites to upload
a file from the local file system, as well as accepting input from various devices including
microphones, pens, and digital cameras.

Common Attributes: Common, UI Common, Single Node Binding

Special Attributes:

mediatype

Space-separated list of suggested media types, used by the XForms Processor to
determine the possible sources of data to upload.

incremental

When true, this form control will generate additional xforms-value-changed
events. The default for this form control is false.

Example:

Example: Uploading An Image

<upload ref="mail/attachment" mediatype="image/*">

 <label>Select image:</label>

 <filename ref="@filename" />

 <mediatype ref="@mediatype" />

</upload>

A graphical browser might render this form control as follows:

8 FORM CONTROLS

74

Implementation Requirements:

• On activation, if child element filename is present and a filename is available, up-
load places the filename of the data to upload in the instance at the node indicated by
the binding attributes on child element filename.

• On activation, if child element mediatype is present and a mediatype is available,
upload places the mediatype of the data to upload in the instance at the node indicated
by the binding attributes on child element mediatype.

Data Binding Restrictions: This form control can only be bound to datatypes xsd:anyURI,
xsd:base64Binary or xsd:hexBinary, or types derived by restriction from these.

Implementation Requirements: For base64Binary or hexBinary data binding:

• When bound to an instance data node of type xsd:base64binary, xsd:hexBin-
ary, or a type derived by restriction thereof, on activation upload places the binary
content in the content of the node with the indicated encoding.

Implementation Requirements: For anyURI data binding:

• When bound to an instance data node of type xsd:anyURI (or a type derived by re-
striction thereof), on activation upload places a URI in the content of the node.

For security reasons, the XForms Processor must not dereference the URI bound to this
form control without explicit user permission.

Note:

Implementors note that upload must associate the binary content, mediatype,
and filename with that URI for 11.4 Serialization as multipart/related and 11.5
Serialization as multipart/form-data serialization.

• Implementations with a file system should support file upload—selecting a specific
file. The types of files presented by default should reflect the mediatype specified by
attribute mediatype, for example defaulting to only audio file types in the file dialog
when the mediatype is "audio/*".

Implementation Requirements: For all data bindings:

• Implementations with specific pen/digitizer hardware should (and implementations with
other pointing devices may) support scribble—allowing in-place creation of pen-based
data.

8 FORM CONTROLS

75

• Implementations with specific audio recording capabilities should support record au-
dio—in-place recording of an audio clip.

• Implementations with a digital camera, scanner interface or screen capture should support
acquire image—in-place upload of images from an attached device.

• Implementations with video recording capability should provide a record video option.

• Implementations with 3d capabilities should provide a 3d interface option.

• Implementations may provide proprietary implementations (for example, a mediatype
of text/rtf could invoke an edit window with a proprietary word processing applic-
ation)

• Implementations are encouraged to support other input devices not mentioned here.

• Implementations which cannot support upload for the given mediatype must make this
apparent to the user.

See the child elements filename 8.3.1 The filename Element and mediatype 8.3.2
The mediatype Element.

8.1.7 The range Element

Description: This form control allows selection from a sequential range of values.

Common Attributes: Common, UI Common, Single Node Binding

Special Attributes:

start

Optional hint for the lexical starting bound for the range—a legal value for the un-
derlying data. If provided, this value is used to further refine the constraints specified
by the underlying model.

end

Optional hint for the ending bound for the range—a legal value for the underlying
data. If provided, this value is used to further refine the constraints specified by the
underlying model.

step

Optional value to use for incrementing or decrementing the value. Must be of a type
capable of expressing the difference between two legal values of the underlying data.

incremental

When true, this form control will generate additional xforms-value-changed
events. The default for this form control is false.

8 FORM CONTROLS

76

Example:

Example: Picking From A Range

<range ref="/stats/balance" start="-2.0" end="2.0" step="0.5">

 <label>Balance</label>

</range>

A graphical browser might render this as follows:

Data Binding Restrictions: Binds only the following list of datatypes, or datatypes derived
by restriction from those in the list: xsd:duration, xsd:date, xsd:time,
xsd:dateTime, xsd:gYearMonth, xsd:gYear, xsd:gMonthDay, xsd:gDay,
xsd:gMonth, xsd:float, xsd:decimal, xsd:double.

Implementation Requirements: Must allow input of a value corresponding to the bound
datatype. Implementations should inform the user of the upper and lower bounds, as well
as the step size, if any. If the instance data value is outside the upper or lower bounds, this
form control must indicate an out-of-range condition. In graphical environments, this form
control may be rendered as a "slider" or "rotary control".

Notice that the attributes of this element encapsulate sufficient metadata that in conjunction
with the type information available from the XForms Model proves sufficient to produce
meaningful prompts when using modalities such as speech, e.g., when using an accessib-
ility aid. Thus, in the example below, an aural user agent might speak a prompt of the form
Please pick a date in the range January 1, 2001 through December 31, 2001.

In the event of overlapping restrictions between the underlying datatype and the start
and end hints, the most restrictive range should be used.

Example:

Example: Picking a date from a range

<range ref="/order/shipDate" start="2001-01-01" end="2001-12-31">

 <label>Ship Date</label>

</range>

8.1.8 The trigger Element

Description: This form control is similar to the HTML element button and allows for
user-triggered actions. This form control may also be used to construct other custom form
controls.

Common Attributes: Common, UI Common, Single Node Binding (optional)

8 FORM CONTROLS

77

Example:

Example: Simple Trigger

<trigger>

 <label>Click here</label>

</trigger>

Data Binding Restrictions: Binds to any node. This form control does not directly interact
with form data, but is affected by model item properties of the bound node, thus binding
attributes are not required.

Implementation Requirements: The user agent must provide a means to generate an
DOMActivate event on the form control. Graphical implementations might render this
form control as a push-button with the label on the button face. Style sheets can be used
to style this form control as an image, hyperlink, or other presentation.

8.1.9 The submit Element

Description: This form control initiates submission of all or part of the instance data to
which it is bound.

Common Attributes: Common, UI Common, Single Node Binding (optional)

Special Attributes:

submission

Required reference to element submission.

Example:

Example: Submit

<submit submission="timecard">

 <label>Submit Timecard</label>

</submit>

Data Binding Restrictions: Binds to any node. This form control does not directly interact
with form data, but is affected by model item properties of the bound node, thus binding
attributes are not required.

Implementation Requirements: Upon receiving event DOMActivate, this form control
dispatches event xforms-submit to the submission element specified by required
attribute submission. Upon activation, this control must become unavailable for further
activations until the submit process concludes with either an xforms-submit-done
or xforms-submit-error event.

8 FORM CONTROLS

78

8.1.10 The select Element

Description: This form control allows the user to make multiple selections from a set of
choices.

Common Attributes: Common, UI Common, Single Node Binding

Special Attributes:

selection

Optional attribute determining whether free entry is allowed in the list. Default is
"closed".

incremental

When true, this form control will generate additional xforms-value-changed
events. The default for this form control is true.

Example:

Example: Selecting Ice Cream Flavor

<select ref="my:flavors">

 <label>Flavors</label>

 <choices>

 <item>

 <label>Vanilla</label>

 <value>v</value>

 </item>

 <item>

 <label>Strawberry</label>

 <value>s</value>

 </item>

 <item>

 <label>Chocolate</label>

 <value>c</value>

 </item>

 </choices>

</select>

In the above example, more than one flavor can be selected.

A graphical browser might render form control select as any of the following:

appearance="minimal"appearance="com-

pact"

appearance="full"

8 FORM CONTROLS

79

Typically, a style sheet would be used to determine the exact appearance of form controls,
though a means is provided to suggest an appearance through attribute appearance.
The value of the attribute consists of one of the following values:

"full": all choices should be rendered at all times.
"compact": a fixed number of choices should be rendered, with scrolling
facilities as needed
"minimal": a minimum number of choices should be rendered, with a facility
to temporarily render additional choices

Data Binding Restrictions: any simpleContent capable of holding a sequence. The restriction
to binding simpleContent exists when the choices are authored as part of the user interface
control as shown in this section. Element itemset for creating dynamic selections de-
scribed in 9.3.3 The itemset Element allows the available choices to be obtained from
an XForms Model, and when using that construct, the data binding restriction to simple-
Content is relaxed.

Note:

A limitation of the XML Schema list datatypes is that white space characters in the
storage values (the value element) are always interpreted as separators between
individual data values. Therefore, authors should avoid using white space characters
within storage values with list simpleContent.

Example: Incorrect Type Declaration

<item>

 <value>United States of America</value>

 ...

</item>

When selected, this item would introduce not one but four additional selection values:
"America", "of", "States", and "United".

Implementation Requirements: The label for each choice must be presented, allowing at
any number of selections, possibly none. This form control stores the values corresponding
to the selected choices as a space separated list in the location addressed by attribute ref.
The values to be stored are either directly specified as the contents of element value, or
specified indirectly through binding attributes on element value.

8 FORM CONTROLS

80

Note that the datatype bound to this form control may include a non-enumerated value
space, e.g., xsd:string, or a union of a enumeration and a non-enumerated datatype
(called an open enumeration). In this case, control select may have attribute selec-
tion="open". The form control should then allow free data entry, as described in 8.1.2
The input Element. The form control may permit multiple values to be entered through
free entry.

For closed selections: If the initial instance value matches the storage value of one or more
of the given items, those items are selected. If there is no match, no items are initially se-
lected. If any selected values do not have a choice with a matching storage value, the form
control must indicate an out-of-range condition.

For open selections: If the initial instance values match the storage value specified by one
or more of the items, the all such matching items are selected. If the initial instance values
do not match the storage value specified by one or more of the items, all such non-
matching items are included as selected values, as if entered through free entry. Free entry
text is handled the same as form control input 8.1.2 The input Element, possibly in
multiplicity. When using dynamic selections with complexTypes, open selection has no
effect.

Implementation Hints: An accessibility aid might allow the user to browse through the
available choices and leverage the grouping of choices in the markup to provide enhanced
navigation through long lists of choices.

8.1.11 The select1 Element

Description: This form control allows the user to make a single selection from multiple
choices.

Common Attributes: Common, UI Common, Single Node Binding

Special Attributes:

selection

Optional attribute determining whether free entry is allowed in the list. Default is
"closed".

incremental

When true, this form control will generate additional xforms-value-changed
events. The default for this form control is true.

Example:

Example: Pick A Flavor

8 FORM CONTROLS

81

<select1 ref="my:flavor">

 <label>Flavor</label>

 <item>

 <label>Vanilla</label>

 <value>v</value>

 </item>

 <item>

 <label>Strawberry</label>

 <value>s</value>

 </item>

 <item>

 <label>Chocolate</label>

 <value>c</value>

 </item>

</select1>

In the above example, selecting one of the choices will result in the associated value given
by element value on the selected item being set in the underlying instance data at the
location icecream/flavor.

A graphical browser might render this form control as any of the following:

appearance="minimal"appearance="com-
pact"

appearance="full"

Data Binding Restrictions: Binds to any simpleContent. The restriction to binding simple-
Content exists when the choices are authored as part of the user interface control as shown
in this section. Element itemset for creating dynamic selections described in 9.3.3 The
itemset Element allows the available choices to be obtained from an XForms Model, and
when using that construct, the data binding restriction to simpleContent is relaxed.

Implementation Requirements: The label for each choice must be presented, allowing at
all times exactly one selection. This form control stores the value corresponding to the
selected choice in the location addressed by attribute ref. The value to be stored is either
directly specified as the contents of element value, or specified indirectly through
binding attributes on element value.

Note that the datatype bound to this form control may include a non-enumerated value
space, e.g., xsd:string, or a union of a enumeration and a non-enumerated datatype
(called an open enumeration). In this case, control select1 may have attribute selec-
tion="open". The form control should then allow free data entry, as described in 8.1.2
The input Element.

8 FORM CONTROLS

82

For closed selections: If the initial instance value matches the storage value of one of the
given items, that item is selected. If there is no match, the form control must indicate an
out-of-range condition..

For open selections: If the initial instance value matches the storage value specified by
one of the items, the first such matching item is selected. Otherwise, the selected value is
the initial lexical value. Free entry text is handled the same as form control input 8.1.2
The input Element.

User interfaces may choose to render this form control as a pulldown list or group of radio
buttons, among other options. The appearance attribute offers a hint as to which ren-
dering might be most appropriate, although any styling information (such as CSS) should
take precedence.

8.2 Common Markup for Selection Controls

8.2.1 The choices Element

This element is used within selection form controls to group available choices. This
provides the same functionality as element optgroup in HTML.

Common Attributes: Common

8.2.2 The item Element

This element specifies the storage value and label to represent an item in a list. It is found
within elements select1 and select, or grouped in element choices.

Common Attributes: Common

8.2.3 The value Element

This element provides a storage value to be used when an item is selected.

Common Attributes: Common, Single Node Binding (optional)

Data Binding Restriction: All lexical values must be valid according to the datatype bound
to the selection control.

If inline content and a ref attribute are both specified, the ref attribute is used.

8.3 Additional Elements

The child elements detailed below provide the ability to attach metadata to form controls.

Instead of supplying such metadata e.g., the label for a form control as inline content of
the contained element label, the metadata can be pointed to by using a simple linking
attribute src on these elements. Notice that systematic use of this feature can be exploited
in internationalizing XForms user interfaces by:

• Factoring all human readable messages to a separate resource XML file.

8 FORM CONTROLS

83

• Using URIs into this XML resource bundle within individual label elements

• Finally, an XForms implementation could use content negotiation to obtain the appro-
priate XML resource bundle, e.g., based on the accept-language headers from the
client, to serve up the user interface with messages localized to the client's locale.

8.3.1 The filename Element

Binding attributes on optional element filename specify the location in the instance for
the parent element upload, when activated, to place the filename for the chosen binary
resource. For security reasons, upload must not take action due to any existing value of
the node.

Common Attributes: Common, Single Node Binding

In the following example, the user is prompted to select an image. When activated, upload
places in mail/attachment either the binary data of the image or a URI for it, depend-
ing on the type declared for the mail/attachment. The filename, perhaps "me.jpg",
is placed in the attribute node mail/attachment@filename, and the mediatype,
perhaps "image/jpeg" in the attribute node mail/attachment@mediatype.

Example:

<upload ref="mail/attachment" mediatype="image/*">

 <label>Select an image to attach</label>

 <filename ref="@filename"/>

 <mediatype ref="@mediatype"/>

</upload>

8.3.2 The mediatype Element

Binding attributes on optional element mediatype specify the location in the instance
for the parent element upload, when activated, to place the mediatype of the chosen
binary resource, if available.

Common Attributes: Common, Single Node Binding

8.3.3 The label Element

This required element labels the containing form control with a descriptive label. Addition-
ally, the label makes it possible for someone who can't see the form control to obtain a
short description while navigating between form controls.

Common Attributes: Common, Single Node Binding (optional), Linking

Special Attributes:

Linking Attributes

8 FORM CONTROLS

84

Link to external label. If the link traversal fails, it is treated as an error (4.5.3 The
xforms-link-error Event).

The label specified can exist in instance data, in a remote document, or as inline text. If
more than one source of label is specified in this element, the order of precedence is: single
node binding attributes, linking attributes, inline text.

An accessibility aid might speak the metadata encapsulated here when the containing form
control gets focus.

8.3.4 The help Element

The optional element help provides a convenient way to attach help information to a
form control. This is equivalent to a <message level="modeless"

ev:event="xforms-help" ev:propagate="stop>.

Common Attributes: Common, Single Node Binding (optional), Linking

Special Attributes:

Linking Attributes

Link to external help information. If the link traversal fails, it is treated as an error
(4.5.3 The xforms-link-error Event).

The message specified can exist in instance data, in a remote document, or as inline text.
If more than one source of message is specified in this element, the order of precedence
is: single node binding attributes, linking attributes, inline text.

An example of this element is at 10.1.12 The message Element.

8.3.5 The hint Element

The optional element hint provides a convenient way to attach hint information to a
form control. This is equivalent to a handler for event xforms-hint that responds with
a <message level="ephemeral">.

Common Attributes: Common, Single Node Binding (optional), Linking

Special Attributes:

Linking Attributes

Link to external hint. If the link traversal fails, it is treated as an error (4.5.3 The
xforms-link-error Event).

The message specified can exist in instance data, in a remote document, or as inline text.
If more than one source of message is specified in this element, the order of precedence
is: single node binding attributes, linking attributes, inline text.

An example of this element is at 10.1.12 The message Element.

8 FORM CONTROLS

85

8.3.6 The alert Element

The optional element alert provides a convenient way to attach alert or error information
to a form control. Rendering of this element is implementation-defined, and there is no
default level such as modal or ephemeral for the displayed message.

Common Attributes: Common, Single Node Binding (optional), Linking

Special Attributes:

Linking Attributes

Link to external alert. If the link traversal fails, it is treated as an error (4.5.3 The
xforms-link-error Event).

The message specified can exist in instance data, in a remote document, or as inline text.
If more than one source of message is specified in this element, the order of precedence
is: single node binding attributes, linking attributes, inline text. See F XForms and Styling
for examples to see how this might be presented to the user.

9 XForms User Interface

This chapter covers XForms features for combining form controls into user interfaces.

9.1 The XForms Group Module

All form controls defined in 8 Form Controls are treated as individual units for purposes
of visual layout e.g., in XHTML processing. Aggregation of form controls with markup
defined in this chapter provides semantics about the relationship among user interface
controls; such knowledge can be useful in delivering a coherent UI to small devices. For
example, if the user interface needs to be split up over several screens, controls appearing
inside the same aggregation would typically be rendered on the same screen or page. The
elements and attributes included in this module are:

Minimal Content ModelAttributesElement
label?, ((Form Con-
trols)|group|switch|repeat|UI Com-
mon)*

Common, UI Common, Single
Node Binding (optional)

group

9.1.1 The group Element

The group element is used as a container for defining a hierarchy of form controls. Groups
can be nested to create complex hierarchies. Model item properties that apply to form
controls apply equally to group, and take precedence over model item properties applied
to individual members of the group.

Common Attributes: Common, UI Common, Single Node Binding (optional)

Note:

9 XFORMS USER INTERFACE

86

When no model item properties apply to the binding expression on group, it can be
considered as an authoring convenience for relative XPath expressions used by form
controls appearing within the group.

When model item properties do apply, they apply to all form controls within the
group. This means, for instance, that if a group is bound to an instance data node
that is non-relevant, all child form controls will also be treated as non-relevant.

The optional label element has special significance when it appears as the first element
child of group, representing a label for the entire group.

Example:

Example: Grouping Related Controls

<group ref="address">

 <label>Shipping Address</label>

 <input ref="line_1">

 <label>Address line 1</label>

 </input>

 <input ref="line_2">

 <label>Address line 2</label>

 </input>

 <input ref="postcode">

 <label>Postcode</label>

 </input>

</group>

Setting the input focus on a group results in the focus being set to the first form control
in the navigation order within that group.

9.2 The XForms Switch Module

This section defines a switch construct that allows the creation of user interfaces where
the user interface can be varied based on user actions and events. The elements and attrib-
utes included in this module are:

Minimal Content ModelAttributesElement
case+Common, UI Common, Single Node

Binding (optional)
switch

label?, ((Form Con-
trols)|group|switch|repeat)*

Common, selected (xsd:boolean)case

EMPTYCommon, case (xsd:IDREF)toggle

9.2.1 The switch Element

This element contains one or more case elements, any one of which is rendered at a
given time.

9 XFORMS USER INTERFACE

87

Note:

This is separate from XForms relevant processing (see 6.1.4 The relevant
Property), which is based on the current state of the XForms Model. As an example,
portions of a questionnaire pertaining to the user's automobile may become relevant
only if the user has answered in the affirmative to the question 'Do you own a car?'.

Common Attributes: Common, UI Common, Single Node Binding (optional)

Example:

Example: switch

<switch>

 <case id="in" selected="true">

 <input ref="yourname">

 <label>Please tell me your name</label>

 <toggle ev:event="DOMActivate" case="out"/>

 </input>

 </case>

 <case id="out" selected="false">

 <html:p>Hello <output ref="yourname" />

 <trigger id="editButton">

 <label>Edit</label>

 <toggle ev:event="DOMActivate" case="in"/>

 </trigger>

 </html:p>

 </case>

</switch>

The above results in the portion of the user interface contained in the first case being
displayed initially. This prompts for the user's name; filling in a value and activating the
control e.g., by pressing enter results switches to the alternate case, with a read-only
output rendering. Activating the trigger labeled "Edit" in turn switches back to the ori-
ginal case.

9.2.2 The case Element

This element encloses markup to be conditionally rendered. The attribute selected
determines the selected state and can be manipulated programmatically via the DOM, or
declaratively via XForms Action toggle.

Common Attributes: Common

Special Attributes:

selected

Optional selection status for the case. The default value is "false".

9 XFORMS USER INTERFACE

88

If multiple cases within a switch are marked as selected="true", the first selected
case remains and all others are deselected. If none are selected, the first becomes selected.

9.2.3 The toggle Element

This XForms Action selects one possible case from an exclusive list of alternatives in a
switch.

This action adjusts all selected attributes on the affected cases to reflect the new
state, and then performs the following:

1 Dispatching an xforms-deselect event to the currently selected case.

2 Dispatching an xform-select event to the case to be selected.

Common Attributes: Common, Events

Special Attributes:

case

Required reference to a case section inside the conditional construct.

9.3 The XForms Repeat Module

The XForms specification allows the definition of repeating structures such as multiple
items within a purchase order. When defining the XForms Model, such higher-level col-
lections are constructed out of basic building blocks; similarly, this section defines user
interface construct repeat that can bind to data structures such as lists and collections.
The elements and attributes included in this module are:

Minimal Content Mod-
el

AttributesElement

((Form Con-
trols)|group|repeat)*

Common, UI Common, Node Set Binding,
startindex (xsd:positiveInteger), number
(xsd:nonNegativeInteger)

repeat

label, (value|copy), (UI
Common)*

Common, Node Set Bindingitemset

EMPTYCommon, Single Node Binding (optional)copy
EMPTYCommon, Events, Node Set Binding, at

(XPathExpression), position ("before"|"after")
insert

EMPTYCommon, Events, Node Set Binding, at
(XPathExpression)

delete

EMPTYCommon, Events, repeat (xsd:IDREF), index
(XPathExpression)

setindex

N/A[repeat-nodeset, repeat-bind, repeat-model]
(Node Set Binding attributes), repeat-startindex

(various)

9 XFORMS USER INTERFACE

89

(xsd:positiveInteger), repeat-number (xsd:non-
NegativeInteger)

9.3.1 The repeat Element

This element defines a UI mapping over a homogeneous collection selected by Node Set
Binding Attributes. This node-set must consist of contiguous child element nodes, with
the same local name and namespace name of a common parent node. The behavior of
element repeat with respect to non-homogeneous node-sets is undefined.

For example:

Example: Shopping Cart

<repeat nodeset="/cart/items/item">

 <input ref="." .../><html:br/>

</repeat>

Common Attributes: Common, UI Common, Node Set Binding

Special Attributes:

startindex

Optional 1-based initial value of the repeat index. The default value is 1.

number

Optional hint to the XForms Processor as to how many elements from the collection
to display.

This element operates over a homogeneous collection by binding the encapsulated user
interface controls to each element of the collection. Attributes on this element specify how
many members of the collection are presented to the user at any given time. XForms Actions
insert, delete, and setindex can be used to operate on the collection—see 10
XForms Actions. Another way to view repeat processing (disregarding special user inter-
face interactions) is to consider "unrolling" the repeat. The above example is similar to
the following (given four item elements in the returned node-set):

Example: Repeat Unrolled

<!-- unrolled repeat -->

 <input ref="/cart/items/item[1]" .../><html:br/>

 <input ref="/cart/items/item[2]" .../><html:br/>

 <input ref="/cart/items/item[3]" .../><html:br/>

 <input ref="/cart/items/item[4]" .../><html:br/>

Example: Homogeneous Collection

9 XFORMS USER INTERFACE

90

<model>

 <instance>

 <my:lines>

 <my:line name="a">

 <my:price>3.00</my:price>

 </my:line>

 <my:line name="b">

 <my:price>32.25</my:price>

 </my:line>

 <my:line name="c">

 <my:price>132.99</my:price>

 </my:line>

 </my:lines>

 </instance>

</model>

 ...

<repeat id="lineset" nodeset="/my:lines/my:line">

 <input ref="my:price">

 <label>Line Item</label>

 </input>

 <input ref="@name">

 <label>Name</label>

 </input>

</repeat>

<trigger>

 <label>Insert a new item after the current one</label>

 <action ev:event="DOMActivate">

 <insert nodeset="/my:lines/my:line" at="index('lineset')"

 position="after"/>

 <setvalue ref="/my:lines/my:line[index('lineset')]/@name"/>

 <setvalue ref="/my:lines/my:line[index('lineset')]/price">0.00</setvalue>

 </action>

</trigger>

<trigger>

 <label>remove current item</label>

 <delete ev:event="activate" nodeset="/my:lines/my:line"

 at="index('lineset')"/>

</trigger>

9.3.2 Creating Repeating Structures Via Attributes

Element repeat enables the creation of user interfaces for populating repeating structures.
When using XForms within host languages like XHTML, it is often necessary to create
repeating structures within constructs such as table. Thus, one might wish to use element
repeat within a table to create the rows of a table, where each row of the table binds
to a distinct member of a homogeneous collection. Since html:table doesn't (and
probably never will) allow xforms:repeat elements as children, another syntax is
needed.

9 XFORMS USER INTERFACE

91

Example: Tables And Repeating Structures

<table>

 <repeat nodeset="...">

 <tr>

 <td>...</td>

 ...

 </tr>

 </repeat>

</table>

More generally, there is a need to integrate repeat behavior into host languages at points
where the content model of the host language does not or cannot provide the appropriate
extension hooks via modularization. To accommodate this, XForms 1.0 defines an altern-
ative syntax that is functionally equivalent to the repeat element, using the following
attributes:

repeat-model

repeat-bind

repeat-nodeset

repeat-startindex

repeat-number

The above attributes are equivalent to the repeat attributes of the same name, but without
the prefix repeat-. A host language can include these attributes in the appropriate places
to enable repeating constructs. For example, a version of XHTML might use:

Example: Tables And Repeating Structures

<html:table xforms:repeat-nodeset="...">

 <html:tr>

 <html:td><xforms:output ref="..."/></html:td>

 </html:tr>

</html:table>

Which could be validated against an appropriately configured XHTML Schema that
includes the XForms Repeat module. Note that what gets repeated is the child elements
of the element with the repeat- attributes.

This should be thought purely as a syntactic transformation, i.e., there is no change to repeat
processing semantics. Further, for purposes of understanding the above as a pure syntactic
transformation, element repeat can be viewed as containing an anonymous group that
wraps the contents of element repeat. Thus, consider the following:

9 XFORMS USER INTERFACE

92

<repeat ...>

 ...

</repeat>

is equivalent to

<repeat ...>

 <group>...</group>

</repeat>

Which is equivalent to

<group repeat-...>

 ...

</group>

Additionally, when using XForms Action setindex, attribute repeat of type idref
can point to any element carrying the repeat attributes. Similarly, when using function
index against a repeating structure created via the repeat-attributes, the id of that
element can be used as the argument to function index.

9.3.3 The itemset Element

This element allows the creation of dynamic selections within controls select and se-
lect1, where the available choices are determined at run-time. The node-set that holds
the available choices is specified via attribute nodeset. As with repeat, this nodeset
should refer to a homogeneous collection. Child elements label and value indirectly
specify the label and storage values. Notice that the run-time effect of itemset is the
same as using element choices to statically author the available choices.

Common Attributes: Common, Node Set Binding

Note:

Whenever a refresh event is dispatched the nodeset is re-evaluated to update
the list of available choices.

The following example shows element itemset within control select to specify a
dynamic list of ice cream flavors:

Example: Dynamic Choice Of Ice Cream Flavors

9 XFORMS USER INTERFACE

93

<model id="cone">

 <instance>

 <my:icecream>

 <my:order/>

 </my:icecream>

 </instance>

</model>

<model id="flavors">

 <instance>

 <my:flavors>

 <my:flavor type="v">

 <my:description>Vanilla</my:description>

 </my:flavor>

 <my:flavor type="s">

 <my:description>Strawberry</my:description>

 </my:flavor>

 <my:flavor type="c">

 <my:description>Chocolate</my:description>

 </my:flavor>

 </my:flavors>

 </instance>

</model>

<!-- user interaction markup -->

<select model="cone" ref="my:order">

 <label>Flavors</label>

 <itemset model="flavors" nodeset="/my:flavors/my:flavor">

 <label ref="my:description"/>

 <copy ref="my:description"/>

 </itemset>

</select>

<!-- For all three items selected, this example produces instance data like

 <my:icecream>

 <my:order>

 <my:description>Vanilla</my:description>

 <my:description>Strawberry</my:description>

 <my:description>Chocolate</my:description>

 </my:order>

 </my:icecream>

-->

9.3.4 The copy Element

Structurally, this element is similar to 8.2.3 The value Element. It differs in that it can
only be used within itemset, and that it works with subtrees of instance data rather than
simple values.

Common Attributes: Common, Single Node Binding (optional)

9 XFORMS USER INTERFACE

94

When an item becomes selected, the following rules apply:

• The target node, selected by the binding attributes on the list form control, must be an
element node, otherwise an exception results (4.5.1 The xforms-binding-exception
Event).

• The element node associated with the item, selected by the binding attributes on copy,
is deep copied as a child of the target node.

• A full computational dependency rebuild is done.

When an item becomes unselected, the following rules apply:

• The target node, selected by the binding attributes on the list form control, must be an
element node, otherwise an exception results (4.5.1 The xforms-binding-exception
Event).

• The child element node associated with the item, selected by the binding attributes on
copy, is deleted.

• A full computational dependency rebuild.

9.3.5 The insert Element

This action is used to insert new entries into a homogeneous collection, e.g., a set of items
in a shopping cart. Attributes of action insert specify the insertion in terms of the col-
lection in which a new entry is to be inserted, and the location within that collection where
the new node will appear. The new node is created by cloning the final member of the
homogeneous collection specified by the initialization instance data. In this process, nodes
of type xsd:ID are modified to remain as unique values in the instance data.

Common Attributes: Common, Events, Node Set Binding

Special Attributes:

at

Required XPath expression evaluated to determine insert location.

position

Required selector ("before" or "after") of insert before/after behavior.

The rules for insert processing are as follows:

1 The homogeneous collection to be updated is determined by evaluating binding attribute
nodeset.

2 The corresponding node-set of the initial instance data is located to determine the pro-
totypical member of the collection. The final member of this collection is cloned to

9 XFORMS USER INTERFACE

95

produce the node that will be inserted. Finally, this newly created node is inserted into
the instance data at the location specified by attributes position and at.

Attribute at is evaluated to determine the insertion index—a numerical value that is
the index into the node-set. Attribute position specifies whether the new node is
inserted before or after this index.

The rules for selecting the index are as follows:

a The return value of the XPath expression in attribute at is processed according to
the rules of the XPath function round(). For example, the literal 1.5 becomes
2, and the literal 'string' becomes NaN.

b If the result is NaN, the insert appends to the end of the node-set.

c If the resulting index is outside the valid range of the node-set, it is replaced with
either 1 or the size of the node-set, whichever is closer.

3 The index for any repeating sequence that is bound to the homogeneous collection where
the node was added is updated to point to the newly added node. The indexes for inner
nested repeat collections are re-initialized to 1.

4 If the insert is successful, the event xforms-insert is dispatched.

This action results in the insertion of newly created data nodes into the XForms instance
data. Such nodes are constructed as defined in the initialization section of the processing
model—see 4.2 Initialization Events. As an example, this causes the instantiation of the
necessary user interface for populating a new entry in the underlying collection when used
in conjunction with repeating structures.

Note:

If this action is contained within an action element, it has special deferred update
behavior (10.1.1 The action Element).

An example of using insert with a repeating structure is located at 9.3.1 The repeat
Element. Note that XForms Action setvalue can be used in conjunction with insert
to provide initial values for the newly inserted nodes.

9.3.6 The delete Element

This action deletes nodes from the instance data.

Common Attributes: Common, Events, Node Set Binding

Special Attributes:

at

Required XPath expression evaluated to determine delete location.

9 XFORMS USER INTERFACE

96

The rules for delete processing are as follows:

1 The homogeneous collection to be updated is determined by evaluating binding attribute
nodeset. If the collection is empty, the delete action has no effect.

2 The n-th element node is deleted from the instance data, where n represents the number
returned from node-set index evaluation, defined in 9.3.5 The insert Element. If no
nth node exists, the operation has no effect.

3 The index should point to the same node after a delete as it did before the delete except:

 When the last remaining item in the collection is removed, the index position be-
comes 0.

 When the index was pointing to the deleted node, which was the last item in the
collection, the index will point to the new last node of the collection and the index
of inner repeats is reinitialized.

 When the index was pointing to the deleted node, which was not the last item in the
collection, the index position is not changed and the index of inner repeats is re-
initialized.

To re-initialize a repeat means to change the index to 0 if it is empty, otherwise 1.

4 If the delete is successful, the event xforms-delete is dispatched.

This action results in deletion of nodes in the instance data.

Note:

If this action is contained within an action element, it has special deferred update
behavior (10.1.1 The action Element).

An example of using delete with a repeating structure is located at 9.3.1 The repeat
Element.

9.3.7 The setindex Element

This action marks a specific item as current in a repeating sequence (within 9.3.1 The
repeat Element).

Common Attributes: Common, Events

Special Attributes:

repeat

Required reference to a repeating element.

index

Required XPath expression that evaluates to a 1-based offset into the sequence.

9 XFORMS USER INTERFACE

97

If the selected index is 0 or less, an xforms-scroll-first event is dispatched and
the index is set to 1. If the selected index is greater than the index of the last repeat item,
an xforms-scroll-last event is dispatched and the index is set to that of the last
item. The indexes for inner nested repeat collections are re-initialized to 1. The implement-
ation data structures for tracking computational dependencies are rebuilt or updated as a
result of this action.

9.3.8 Repeat Processing

The markup contained within the body of element repeat specifies the user interface to
be generated for each member of the underlying collection. During user interface initializ-
ation (see 4.2.2 The xforms-model-construct-done Event), the following steps are per-
formed for repeat:

1 Attribute nodeset is evaluated to locate the homogeneous collection to be operated
on by this repeat.

2 The corresponding nodes in element instance in the source document are loc-
ated—these nodes provide initial values and also serve as a prototypical instance for
constructing members of the repeating collection.

3 The index for this repeating structure is initialized to the value of startindex.

4 The user interface template specified within element repeat is bound to this prototyp-
ical instance. If there is a type mismatch between the prototypical instance and the
binding restrictions for the user interface controls, an error is signaled and processing
stops.

5 User interface as specified by the repeat is generated for the requisite number of
members of the collection as specified by attributes on element repeat.

The processing model for repeating structures uses an index that points to the current item
in the instance data. This repeat index is accessed via XForms function index 7.8.5 The
index() Function and manipulated via XForms Action setindex 9.3.7 The setindex
Element. This index is used as a reference point for insert and delete operations.
Notice that the contained XForms form controls inside element repeat do not explicitly
specify the index of the collection entry being populated. This is intentional; it keeps both
authoring as well as the processing model simple.

The binding expression attached to the repeating sequence returns a node-set of the collec-
tion being populated, not an individual node. Within the body of element repeat, binding
expressions are evaluated with a context node of the node determined by the index. Repeat
processing uses XPath expressions to address the collection over which element repeat
operates. The initial instance data supplies the prototypical member of the homogeneous
collection, and this is used during UI initialization—4.2.2 The xforms-model-construct-
done Event—to construct the members of the homogeneous collection. This prototypical
instance is also used by action insert when creating new members of the collection.
To create homogeneous collections, the initial instance data must specify at least one

9 XFORMS USER INTERFACE

98

member of the collection; this requirement is similar to requiring instance data in addition
to a schema, and the same justification applies.

The form controls appearing inside repeat need to be suitable for populating individual
items of the collection. A simple but powerful consequence of the above is that if the
XForms Model specifies nested collections, then a corresponding user interface can nest
repeat elements.

9.3.9 Nested Repeats

It is possible to nest repeat elements to create more powerful user interface for editing
structured data. G.2 Editing Hierarchical Bookmarks Using XForms is an example of
a form using nested repeats to edit hierarchical data consisting of bookmarks within multiple
sections. Notice that an inner repeat's index always starts from 1. Consider the following
insert statement that appears as part of that example.

Example: Repeat Index and Nested Repeats

<xforms:insert nodeset="/bookmarks/section[index('repeatSections')]/bookmark"

 at="index('repeatBookmarks')"

 position="after"/>

The above insert statement is used in that example to add new bookmark entries into
the currently selected section. The inner (nested) repeat operates on bookmarks in this
selected section; The index—as returned by XForms function index—for this inner repeat
starts at 1. Hence, after a new empty section of bookmarks is created and becomes current,
the first insert bookmark operation adds the newly created bookmark at the front of the
list.

9.3.10 User Interface Interaction

Element repeat enables the binding of user interaction to a homogeneous collection.
The number of displayed items might be less than the total number available in the collec-
tion. In this case, the presentation would render only a portion of the repeating items at a
given time. For example, a graphical user interface might present a scrolling table. The
current item indicated by the repeat index should be made available to the user at all times,
for example, not allowed to scroll out of view. The XForms Actions enumerated at 10
XForms Actions may be used within event listeners to manipulate the homogeneous
collection being populated by scrolling, inserting, and deleting entries.

Notice that the markup encapsulated by element repeat acts as the template for the user
interaction that is presented to the user. As a consequence, it is not possible to refer to
portions of the generated user interface via statically authored idref attributes. A neces-
sary consequence of this is that XForms 1.0 does not specify the behavior of construct
switch within element repeat. Future versions of XForms may specify the behavior
of switch inside repeat based on implementation experience and user feedback.

9 XFORMS USER INTERFACE

99

10 XForms Actions

This chapter defines an XML Events-based [XML Events] common set of actions that
can be invoked in response to events.

Note:

XForms itself defines no method for script-based event handling. The definition of
such facilities is a responsibility of the hosting language.

10.1 The XForms Action Module

All form controls defined in this specification have a set of common behaviors that encour-
age consistent authoring and look and feel for XForms-based applications. This consistency
comes from attaching a common set of behaviors to the various form controls. In conjunc-
tion with the event binding mechanism provided by XML Events, these handlers provide
a flexible means for forms authors to specify event processing at appropriate points within
the XForms user interface. XForms Actions are declarative XML event handlers that
capture high-level semantics. As a consequence, they significantly enhance the accessib-
ility of XForms-based applications in comparison to previous Web technologies that relied
exclusively on scripting.

The elements and attributes included in this module are:

Minimal Content
Model

AttributesElement

(Action)+Common, Eventsaction
EMPTYCommon, Events, name (xsd:NMTOKEN), tar-

get (xsd:IDREF), bubbles (xsd:boolean), can-
celable (xsd:boolean)

dispatch

EMPTYCommon, Events, model (xsd:IDREF)rebuild
EMPTYCommon, Events, model (xsd:IDREF)recalculate
EMPTYCommon, Events, model (xsd:IDREF)revalidate
EMPTYCommon, Events, model (xsd:IDREF)refresh
EMPTYCommon, Events, control (xsd:IDREF)setfocus
EMPTYCommon, Events, Single Node Binding (option-

al), resource (xsd:anyURI), show ("new" | "re-
place")

load

PCDATACommon, Events, Single Node Binding, value
(XPathExpression)

setvalue

EMPTYCommon, Events, submission (xsd:IDREF)send
EMPTYCommon, Events, model (xsd:IDREF)reset
(PCDATA|UI Inline)*Common, Events, Single Node Binding (option-

al), Linking, level ("ephemeral" | "modeless" |
"modal")

message

10 XFORMS ACTIONS

100

See also: 9.2.3 The toggle Element; 9.3.5 The insert Element; 9.3.6 The delete Element;
and 9.3.7 The setindex Element.

This module also defines the content set "Action", which includes the following elements
(of these, toggle comes from the XForms Switch module, and insert, delete, and
setindex come from the XForms Repeat module):

(action|dispatch|rebuild|refresh|recalculate|revalidate|setfocus|

 load|setvalue|send|reset|message|toggle|insert|delete|setindex)*

Additionally, this module defines the attribute group "XML Events", which includes all
of the "global" attributes defined in that specification ([XML Events]).

The following example shows how events can be used:

Example: Action Syntax

<xforms:trigger>

 <xforms:label>Reset</xforms:label>

 <xforms:reset ev:event="DOMActivate" model="thismodel"/>

</xforms:trigger>

This example recreates the behavior of the HTML reset control, which this specification
does not define as an independent form control.

For each built-in XForms Action, this chapter lists the following:

Name
Common Attributes
Special Attributes
Description of behavior

All elements defined in this chapter explicitly allow global attributes from the XML Events
namespace, and apply the processing defined in that specification in section 2.3 [XML
Events].

10.1.1 The action Element

Action action is used to group multiple actions.

When using element action to group actions, care should be taken to list the event on
element action, rather than on the contained actions.

Common Attributes: Common, Events

Example: Grouping Actions

10 XFORMS ACTIONS

101

<trigger>

 <label>Click me</label>

 <action ev:event="DOMActivate">

 <reset model="thismodel"/>

 <setvalue ref="."/>

 </action>

</trigger>

Notice that in the above example, ev:event="DOMActivate" occurs on element
action. Placing ev:event="DOMActivate" on either or both of the contained ac-
tions will have no effect. This is because the above example relies on the defaulting of
[XML Events] attributes observer and handler. As defined in the XML Events spe-
cification, if both observer and handler attributes are omitted, then the parent is the observer.
Placing ev:event="DOMActivateD" on the children of element action therefore
causes element action to become the observer for the individual events. Consequently,
these actions will never be triggered since events arrive at element trigger, not element
action.

Deferred Updates: Many XForms Actions have a deferred effect on the instance data
when specified as a descendant of an action element.

Implementations are free to use any strategy to accomplish deferred updates, but the end
result must be as follows: Instance data changes performed by a set of actions do not result
in immediate computation dependency rebuilding, recalculation, revalidate and form
control refreshing until the termination of the outermost action handler, as described here.
Each outermost action handler can be thought of as having a set of Boolean flags, initially
false, to indicate whether each of the actions rebuild, recalculate, revalid-
ate, and refresh are required upon termination of the outer action handler.

Actions that directly invoke rebuild, recalculate, revalidate, or refresh always have an
immediate effect, and clear the corresponding flag. The XForms Actions in this category
are:

rebuild

recalculate

revalidate

refresh

XForms Actions that change the tree structure of instance data result in setting all four
flags to true. The XForms Actions in this category are:

insert

delete

XForms Actions that change only the value of an instance node results in setting the flags
for recalculate, revalidate, and refresh to true and making no change to
the flag for rebuild. The XForms Actions in this category are:

10 XFORMS ACTIONS

102

setvalue

Finally, the reset action takes effect immediately and clears all of the flags.

10.1.2 The dispatch Element

This action dispatches an XForms Event to a specific element identified by the target
attribute. Two kinds of event can be dispatched:

1 Predefined XForms events (i.e., xforms-event-name), in which case the bubbles and
cancelable attributes are ignored and the standard semantics as defined in 4 Pro-
cessing Model apply.

2 An event created by the XForms author with no predefined XForms semantics and as
such not handled by default by the XForms Processor.

Common Attributes: Common, Events

Special Attributes:

name

Required name of the event to dispatch.

target

Required reference to the event target.

bubbles

Optional boolean indicating if this event bubbles—as defined in [DOM2 Events].
The default value depends on the definition of a custom event. For predefined events,
this attribute has no effect.

cancelable

Optional boolean indicating if this event is cancelable—as defined in [DOM2 Events].
The default value depends on the definition of a custom event. For predefined events,
this attribute has no effect.

10.1.3 The rebuild Element

This action causes the processing of xforms-rebuild to happen, bypassing the normal
event flow. This action results in the XForms Processor rebuilding any internal data
structures used to track computational dependencies among instance data nodes —see
4.3.7 The xforms-rebuild Event.

Common Attributes: Common, Events

Special Attributes:

model

10 XFORMS ACTIONS

103

Required IDREF of the model to be processed.

Note:

If this action is contained within an action element, it has special deferred update
behavior (10.1.1 The action Element).

10.1.4 The recalculate Element

This action causes the processing of xforms-recalculate to happen, bypassing the
normal event flow. As a result, instance data nodes whose values need to be recalculated
are updated as specified in the processing model—see 4.3.6 The xforms-recalculate
Event.

Common Attributes: Common, Events

Special Attributes:

model

Required IDREF of the model to be processed.

Note:

If this action is contained within an action element, it has special deferred update
behavior (10.1.1 The action Element).

10.1.5 The revalidate Element

This action causes the processing of xforms-revalidate to happen, bypassing the
normal event flow. This results in the instance data being revalidated as specified by the
processing model—see 4.3.5 The xforms-revalidate Event.

Common Attributes: Common, Events

Special Attributes:

model

Required IDREF of the model to be processed.

Note:

If this action is contained within an action element, it has special deferred update
behavior (10.1.1 The action Element).

10.1.6 The refresh Element

This action causes the processing of xforms-refresh to happen, bypassing the normal
event flow. This action results in the XForms user interface being refreshed, and the
presentation of user interface controls being updated to reflect the state of the underlying
instance data—see 4.3.4 The xforms-refresh Event.

10 XFORMS ACTIONS

104

Common Attributes: Common, Events

Special Attributes:

model

Required IDREF of the model to be processed.

Note:

If this action is contained within an action element, it has special deferred update
behavior (10.1.1 The action Element).

10.1.7 The setfocus Element

This action sets focus to the form control identified by attribute control by dispatching
an xforms-focus event (4.3.2 The xforms-focus Event). Note that this event is impli-
citly invoked to implement XForms accessibility features such as accesskey.

Common Attributes: Common, Events

Special Attributes:

control

Required reference to a form control.

Setting focus to a repeating structure sets the focus to the repeat item represented by the
repeat index.

10.1.8 The load Element

This action traverses the specified link.

Common Attributes: Common, Events, Single Node Binding (optional)

Special Attributes:

resource

Link to external resource to load, defined as an [XLink 1.0] link between this element
and the remote resource indicated. No XLink actuate value is defined, since
control of actuation is defined by XML Events. The XLink show value depends on
the show attribute. If the link traversal fails, it is treated as an error (4.5.3 The
xforms-link-error Event).

show

Optional link behavior specifier.

Either the single node binding attributes, pointing to a URI in the instance data, or the
linking attributes are required. If both are present, the action has no effect.

10 XFORMS ACTIONS

105

Possible values for attribute show have the following processing for the document (or
portion of a document) reached by traversing the link:

new

The document is loaded into a new presentation context, e.g., a new window. Form
processing in the original window continues.

replace

The document is loaded into the current window. Form processing is interrupted,
exactly as if the user had manually requested navigating to a new document.

10.1.9 The setvalue Element

This action explicitly sets the value of the specified instance data node.

Common Attributes: Common, Events, Single Node Binding

Special Attributes:

value

Optional XPath expression to evaluate, with the result stored in the selected instance
data node.

The element content of setvalue specifies the literal value to set; this is an alternative
to specifying a computed value via attribute value. The following two examples contrast
these approaches:

Example: setvalue with Expression

<setvalue bind="put-here" value="a/b/c"/>

This causes the string value at a/b/c in the instance data to be placed on the single
node selected by the bind element with id="put-here".

Example: setvalue with Literal

<setvalue bind="put-here">literal string</setvalue>

This causes the value "literal string" to be placed on the single node selected by the bind
element with id="put-here".

If neither a value attribute nor text content are present, the effect is to set the value of
the selected node to the empty string (""). If both are present, the value attribute is
used.

10 XFORMS ACTIONS

106

All strings are inserted into the instance data as follows:

• Element nodes: If the element has any child text nodes, the first text node is replaced
with one corresponding to the new value. If no child text nodes are present, a text node
is created, corresponding to the new value, and appended as the first child node.

• Attribute nodes: The string-value of the attribute is replaced with a string corresponding
to the new value.

• Text nodes: The text node is replaced with a new one corresponding to the new value.

• Namespace, processing instruction, comment, and the XPath root node: behavior is
undefined.

Note:

If this action is contained within an action element, it has special deferred update
behavior (10.1.1 The action Element).

10.1.10 The send Element

This action initiates submit processing by dispatching an xforms-submit event. Pro-
cessing of event xforms-submit is defined in the processing model—see 4.3.9 The
xforms-submit Event.

Common Attributes: Common, Events

Special Attributes:

submission

Required reference to a submission element.

Note:

This XForms Action is a convenient way of expressing the following:

<dispatch target="mysubmitinfo" name="xforms-submit"/>

10.1.11 The reset Element

This action initiates reset processing by dispatching an xforms-reset event to the
specified model. Processing of event xforms-reset is defined in the processing
model—see 4.3.8 The xforms-reset Event.

Common Attributes: Common, Events

Special Attributes:

model

10 XFORMS ACTIONS

107

Required selection of instance data for reset, defined in 3.2.3 Single-Node Binding
Attributes.

Note:

If this action is contained within an action element, it has special deferred update
behavior (10.1.1 The action Element).

10.1.12 The message Element

This action encapsulates a message to be displayed to the user.

Common Attributes: Common, Events, Single Node Binding (optional)

Special Attributes:

Linking Attributes

Link to external message. If the link traversal fails, it is treated as an error (4.5.3 The
xforms-link-error Event).

level

Required message level identifier, one of ("ephemeral"|"modeless"|"modal"|QName-
but-not-NCName). This specification does not define behavior for QName values.

The message specified can exist in instance data, in a remote document, or as inline text.
If more than one source of message is specified in this element, the order of precedence
is: single node binding attributes, linking attributes, inline text.

A graphical browser might render a modal message as follows:

<model>

 <message level="modal" ev:event="xforms-ready">This is not a drill!</message>

 ...

</model>

A modeless message is the foundation for displaying a help message, which a graphical
browser might render as follows:

10 XFORMS ACTIONS

108

<secret ref="/login/password">

 <label>Password</label>

 <help>Have you forgotten your password? Simply call 1-900-555-1212 and have

 a major credit card handy.</help>

</secret>

An ephemeral message is the foundation for displaying a hint message, which a graph-
ical browser might render as follows:

<input ref="po/address/street1">

 <label>Street</label>

 <hint>Please enter the number and street name</hint>

</input>

10.1.13 Actions insert, delete and setindex

In addition to the action handlers detailed in this chapter, XForms defines three actions
as part of the XForms Repeat module: 9.3.5 The insert Element, 9.3.6 The delete Element,
and 9.3.7 The setindex Element.

11 Submit

XForms is designed to gather instance data, serialize it into an external representation,
and submit it with a protocol. XForms defines a set of options for serialization and submis-
sion. The following sections define the processing of instance data for submission, and
the behavior for the serialization and submission options.

11.1 The xforms-submit Event

Submission begins with the default action for a xforms-submit event.

Target: submission

Bubbles: Yes

11 SUBMIT

109

Cancelable: Yes

Context Info: None

Under no circumstances may more than a single concurrent submit process be under way
for a particular XForms Model. From the start of the default action of xforms-submit,
until the completion of the default action for xforms-submit-done or xforms-
submit-error, the default action for subsequent xforms-submit events is to do
nothing.

Otherwise, default action for this event results in the following steps:

1 A node from the instance data is selected, based on attributes on the submission
element. The indicated node and all nodes for which it is an ancestor are considered for
the remainder of the submit process.

2 All selected instance data is revalidated, according to the rules at 4.3.5 The xforms-
revalidate Event, taking into account only namespace nodes considered for serialization
as described at 3.3.3 The submission Element.. Any invalid instance data stops submit
processing after dispatching event xforms-submit-error.

3 Selected instance data is serialized according to the rules stated at 11.2 Submission
Options.

4 Serialized instance data is submitted using the protocol indicated by the rules stated at
11.2 Submission Options.

5 The response returned from the submission is applied as follows:

 For a success response including a body, when the value of the replace attribute
on element submission is "all", the event xforms-submit-done is dis-
patched, and submit processing concludes with entire containing document being
replaced with the returned body.

 For a success response including a body of an XML media type, when the value of
the replace attribute on element submission is "instance", the response
is parsed as XML and all of the internal instance data corresponding to the submitted
instance is replaced with the result, using the same processing as remote instance
data retrieved through src, and the xforms-model-construct event is dis-
patched to element model. Submit processing then concludes after dispatching
xforms-submit-done.

 For a success response including a body of a non-XML media type, when the value
of the replace attribute on element submission is "instance", nothing in
the document is replaced and submit processing concludes after dispatching
xforms-submit-error.

 For a success response including a body, when the value of the replace attribute
on element submission is "none", submit processing concludes after dispatching
xforms-submit-done.

11 SUBMIT

110

 For a success response not including a body, submit processing concludes after
dispatching xforms-submit-done.

 Behaviors of other possible values for attribute replace are not defined in this
specification.

 For an error response nothing in the document is replaced, and submit processing
concludes after dispatching xforms-submit-error.

11.2 Submission Options

The XForms Model specifies a submission element containing the following attributes
that affect serialization and submission. This section summarizes the behaviors for the
allowable values of these attributes, and introduces the following sections that define the
behavior for serialization and submission. (See 3.3.3 The submission Element for addi-
tional submission attributes that affect serialization.)

• action (xsd:anyURI)

• method (xsd:string, enumerated below)

For the URI scheme of action, XForms normatively defines a binding to HTTP/1.1
[RFC 2616].

Note:

Other bindings, in particular to the URI scheme "mailto:" may, and the schemes "ht-
tps:" and "file:" should, be supported. Bindings to these schemes are not normatively
defined in XForms. Implementations that choose to provide a binding to these schemes
should pay particular attention to privacy and security concerns. Within the "http:"
and "https:" schemes, form creators are encouraged to follow the finding of the W3C
Technical Architecture Group on when to use the GET method: [TAG Finding 7]

The method attribute determines the serialization format, and the URI scheme used in
the action attribute determines the submit protocol, according to the following table:

SubmissionSerializationmethodURI scheme
HTTP POST or equi-
valent

application/xml"post"http https mailto

HTTP GET or equival-
ent

application/x-

www-form-urlen-

coded

"get"http https file

HTTP PUT or equival-
ent

application/xml"put"http https file

HTTP POST or equi-
valent

multipart/re-

lated

"multipart-post"http https mailto

11 SUBMIT

111

SubmissionSerializationmethodURI scheme
HTTP POST or equi-
valent

multipart/form-

data

"form-data-post"http https mailto

HTTP POST or equi-
valent

application/x-

www-form-urlen-

coded

"urlencoded-post"
(Deprecated)

http https mailto

N/AN/Aany other QNAME
with no prefix

(any)

implementation-
defined

implementation-
defined

any QNAME with a
prefix

(any)

Note:

Foreign-namespaced attributes are allowed on element submission, but no beha-
vior is defined by XForms 1.0.

11.3 Serialization as application/xml

This format permits the expression of the instance data as XML that is straightforward to
process with off-the-shelf XML processing tools. In addition, this format is capable of
submission of binary content.

The steps for serialization are as follows:

1 An XML document is produced following the rules of the XML output method defined
in [XSLT 1.0] section 16 and 16.1, using the values supplied as attributes of the sub-
mission element.

a Handling of namespace nodes: The default behavior is that every namespace node
is serialized according to the rules of the XML output method, so that at least one
namespace declaration appears in the serialized XML for each in-scope namespace.
Additional inherited namespaces are declared on the root element of the serialized
XML. If, however, attribute includenamespaceprefixes on element sub-
mission is present, then all namespace declarations not visibly utilized in the in-
stance data (as defined in [Exc-C14N]) and the default namespace if it is empty are
excluded from the root element serialization, unless the corresponding namespace
prefix is listed in the includenamespaceprefixes attribute. The special value
#default represents the default namespace.

b Mediatype: By default, the mediatype of the serialized XML instance is applica-
tion/xml, but can be changed to a compatible type using element submission
attribute mediatype. Authors should ensure that the type specified is compatible
with application/xml.

11 SUBMIT

112

11.4 Serialization as multipart/related

This format is intended for integration of XForms into environments that involve large
amounts of binary data where the inclusion of the data as xsd:base64Binary or
xsd:hexBinary is undesirable.

In this format, XML instance data is serialized as one part of the [RFC 2387] multi-
part/related message, using the rules as described in 11.3 Serialization as applica-
tion/xml. Binary content from xsd:anyURI instance nodes populated by the upload
(see 8.1.6 The upload Element) control is serialized in separate parts of the [RFC 2387]
multipart/related message.

This format follows the rules of multipart/related MIME data streams for in [RFC
2387], with specific requirements of this serialization listed below:

• multipart/related message header requirements:

 Must contain a type parameter of the mediatype of the serialized XML instance.

 Must contain a start parameter referring to the Content-ID first body part (root).

• First body part (root) requirements:

 Must have Content-Type parameter of the type specified by the submission
mediatype attribute.

 Content is serialized by the rules at 11.3 Serialization as application/xml.

• Subsequent part requirements:

 One part for each node with a datatype of xsd:anyURI populated by upload
with:

 A Content-Type header that represents the type of the attachment if known,
otherwise application/octet-stream.

 A Content-Transfer-Encoding header.

 A Content-ID header whose value matches the URI in the associated instance
data node.

 The binary content associated with the URI, serialized according to the Content-
Transfer-Encoding heading.

Example: multipart/related

11 SUBMIT

113

Content-Type: multipart/related; boundary=f93dcbA3; type=application/xml; start="<980119.X53GGT@example.com>"

Content-Length: xxx

--f93dcbA3

Content-Type: application/xml; charset=UTF-8

Content-ID: <980119.X53GGT@example.com>

<?xml version="1.0"?>

<uploadDocument>

 <title>My Proposal</title>

 <author>E. X. Ample</author>

 <summary>A proposal for a new project.</summary>

 <notes image="cid:980119.X17AXM@example.com">(see handwritten region)</notes>

 <keywords>project proposal funding</keywords>

 <readonly>false</readonly>

 <filename>image.png</filename>

 <content>cid:980119.X25MNC@example.com</content>

</uploadDocument>

--f93dcbA3

Content-Type: image/png

Content-Transfer-Encoding: binary

Content-ID: <980119.X25MNC@example.com>

...Binary data here...

--f93dcbA3

Content-Type: image/png

Content-Transfer-Encoding: binary

Content-ID: <980119.X17AXM@example.com>

...Binary data here...

--f93dcbA3--

11.5 Serialization as multipart/form-data

This format is for legacy compatibility to permit the use of XForms clients with [RFC
2388] servers. This method is suitable for the persistence of binary content. Contextual
path information, attribute values, namespaces and namespace prefixes are not preserved.
As a result, different elements might serialize to the same name.

Note:

Existing HTML user agents fail to encode special characters (such as double quotes)
and non-ASCII characters in the Content-Disposition: form-data name
and filename parameters. Since this serialization method is supported for legacy
applications only, new applications should use application/xml or multi-
part/related.

This format follows the rules for multipart/form-data MIME data streams in [RFC
2388], with specific requirements of this serialization listed below:

• Each element node is visited in document order.

• Each element that has exactly one text node child is selected for inclusion.

11 SUBMIT

114

• Element nodes selected for inclusion are as encoded as Content-Disposition:
form-data MIME parts as defined in [RFC 2387], with the name parameter being
the element local name.

• Element nodes of any datatype populated by upload are serialized as the specified
content and additionally have a Content-Disposition filename parameter, if
available.

• The Content-Type must be text/plain except for xsd:base64Binary,
xsd:hexBinary, and derived types, in which case the header represents the media
type of the attachment if known, otherwise application/octet-stream. If a
character set is applicable, the Content-Type may have a charset parameter.

Example:

Example: multipart/form-data

Content-Type: multipart/form-data; boundary=AaB03x

Content-Length: xxx

--AaB03x

Content-Disposition: form-data; name="document"; filename="b.txt"

Content-Type: text/plain; charset=iso-8859-1

This is a file.

It has two lines.

--AaB03x

Content-Disposition: form-data; name="title"

Content-Type: text/plain; charset=iso-8859-1

A File

--AaB03x

Content-Disposition: form-data; name="summary"

Content-Type: text/plain; charset=iso-8859-1

This is my file

file test

--AaB03x--

11.6 Serialization as application/x-www-form-urlencoded

This serialization format is designed to allow the use of a form to gather the data necessary
to produce a URI that names a resource and for accessing that resource with an HTTP
GET operation.

This format represents an extension of the [XHTML 1.0] form content type applica-
tion/x-www-form-urlencoded with specific rules for encoding non-ASCII and
reserved characters.

This format is not suitable for the persistence of binary content. Therefore, it is recommen-
ded that forms capable of containing binary content use another serialization method.

11 SUBMIT

115

The steps for serialization are as follows:

1 Each element node is visited in document order. Each element that has one text node
child is selected for inclusion. Note that attribute information is not preserved.

2 Element nodes selected for inclusion are encoded as EltName=value{sep}, where
= is a literal character, {sep} is the separator character from the separator attribute
on submission, EltName represents the element local name, and value represents
the contents of the text node. Note that contextual path information is not preserved,
nor are namespaces or namespace prefixes. As a result, different elements might serialize
to the same name.

 The encoding of EltName and value are as follows: space characters are replaced
by +, and then non-ASCII and reserved characters (as defined by [RFC 2396] as
amended by subsequent documents in the IETF track) are escaped by replacing the
character with one or more octets of the UTF-8 representation of the character, with
each octet in turn replaced by %HH, where HH represents the uppercase hexadecimal
notation for the octet value and % is a literal character. Line breaks are represented
as "CR LF" pairs (i.e., %0D%0A).

3 All such encodings are concatenated, maintaining document order.

Example:

Example: application/x-www-form-urlencoded

GivenName=Ren%C3%A9;

This format consists of simple name-value pairs.

<PersonName title="Mr">

 <GivenName>René</GivenName>

</PersonName>

Here is the instance data for the above example. Note that very little of the data is pre-
served. Authors desiring greater data integrity should select a different serialization
format.

11.7 The post, multipart-post, form-data-post, and
urlencoded-post Submit Methods

These submit methods represent HTTP POST or the equivalent concept (such as a mail
message). The serialized form data is delivered as the message body.

11 SUBMIT

116

11.8 The put Submit Method

This submit method represents HTTP PUT or the equivalent concept (such as writing to
a local file). The serialized form data is delivered as the message body.

11.9 The get Submit Method

This submit method represents HTTP GET or the equivalent concept. The serialized form
data is delivered as part of the URI that is requested during the submit process.

This method is not suitable for submission of forms that are intended to change state or
cause other actions to take place at the server. See [RFC 2616] for recommended uses of
HTTP GET.

The URI is constructed as follows:

• The submit URI from the action attribute is examined. If it does not already contain
a ? (question mark) character, one is appended. If it does already contain a question
mark character, then a separator character from the attribute separator is appended.

• The serialized form data is appended to the URI.

No message body is sent with the request.

12 Conformance

12.1 Conformance Levels

The XForms specification is intended for implementation on hardware platforms of all
sizes, from tiny hand-held devices to high-powered servers. For this reason, a separate
document is being developed to describe a conformance profile of XForms that can be
processed with fewer resources.

12.1.1 XForms Full

This conformance level is suitable for more powerful forms processing, such as might be
found on a standard desktop browser or a distributed XForms Processor involving server-
side components. XForms Full implementations must return "full" from the property
method (defined at 7.9.1 The property() Function) called with the "conformance-
level" parameter string.

12 CONFORMANCE

117

12.2 Conformance Description

12.2.1 Conforming XForms Processors

All XForms Processors must conform to the following specifications, except as qualified
below:

• [XML 1.0]

• [XML Names]

• [XML Events]

• [XPath 1.0] Implementing all features.

• [XML Schema part 2]

All XForms Processors must fully support the following XForms modules: Core; MustUn-
derstand; Form Controls; Group; Switch; Repeat; and Action.

All XForms Processors must also support: the XForms Processing Model and all events
listed at 4 Processing Model; the http scheme for processing xsd:anyURI; all serialization
methods defined at 11 Submit.

A host language may introduce additional conformance requirements.

XForms Full Processors must implement all required features defined in this specification.

12.2.2 Conforming XForms Documents

All XForms Containing Documents must conform to the following specifications, except
as qualified below:

• [XML 1.0]

• [XML Names]

• [XML Events]

• [XML Schema part 2]

XForms elements are typically inserted into a containing document in multiple places.
The root element for each individual fragment must be model, a form control, group,
repeat, or switch. Individual XForms fragments must be schema-valid against the
Schema for XForms (A Schema for XForms).

A host language may introduce additional conformance requirements.

All XForms Full conforming documents must conform to all required portions of this
specification.

12 CONFORMANCE

118

12.2.3 Conforming XForms Generators

XForms generators must generate conforming XForms documents.

13 Glossary Of Terms

Binding

[Definition: A "binding" connects an instance data node to a form control or to a
model item constraint by using a binding expression as a locater.]

Binding expression

[Definition: An [XPath 1.0] PathExpr used in a binding.]

Model Binding expression

[Definition: An [XPath 1.0] PathExpr used in a binding that declares a model item
property.]

UI or Action Binding expression

[Definition: An [XPath 1.0] PathExpr used in binding a form control to the instance,
or to specify the node or node-set for operation by an action.]

Computed expression

[Definition: An [XPath 1.0] expression used by model item properties such as relevant
and calculate to include dynamic functionality in XForms.]

Containing document

[Definition: A specific document, for example an XHTML document, in which one
or more <model> elements are found.]

Datatype

[Definition: From XML Schema [XML Schema part 2]: A 3-tuple, consisting of a)
a set of distinct values, called its value space, b) a set of lexical representations,
called its lexical space, and c) a set of facets that characterize properties of the value
space, individual values or lexical items.]

Facet

[Definition: From XML Schema [XML Schema part 2]: A single defining aspect of
a value space. Generally speaking, each facet characterizes a value space along inde-
pendent axes or dimensions.]

First node rule

[Definition: When a UI Single-Node Binding attribute selects a node-set of size >
1, the first node in the node-set is used.]

13 GLOSSARY OF TERMS

119

Form control

[Definition: An XForms user interface control that serves as a point of user interac-
tion.]

Host language

[Definition: An XML vocabulary, such as XHTML, into which XForms is embedded.]

Instance data

[Definition: An internal tree representation of the values and state of all the instance
data nodes associated with a particular form.]

Instance data node

[Definition: An [XPath 1.0] node from the instance data.]

Lexical space

[Definition: From XML Schema [XML Schema part 2]: A lexical space is the set of
valid literals for a datatype.]

Model item

[Definition: An instance data node with associated constraints.]

Model item property

[Definition: An XForms-specific annotation to an instance data node.]

Schema constraint

[Definition: A restriction, applied to form data, based on XML Schema datatypes.]

Value space

[Definition: From XML Schema [XML Schema part 2]: A set of values for a given
datatype. Each value in the value space of a datatype is denoted by one or more lit-
erals in its lexical space.]

XForms Model

[Definition: The non-visible definition of an XML form as specified by XForms.
The XForms Model defines the individual model items and constraints and other
run-time aspects of XForms.]

XForms Processor

[Definition: A software application or program that implements and conforms to the
XForms specification.]

13 GLOSSARY OF TERMS

120

A Schema for XForms

The normative XML Schema for XForms is located at ht-
tp://www.w3.org/MarkUp/Forms/2002/XForms-Schema.xsd.

A.1 Schema for XML Events

This XML Schema for XML Events is referenced by the XML Schema for XForms, and
located at http://www.w3.org/TR/2003/REC-xml-events-20031014/#a_schema_attribs.

B References

B.1 Normative References

Exc-C14N
Exclusive XML Canonicalization Version 1.0, J. Boyer, D. Eastlake 3rd, J. Reagle,
2002. W3C Recommendation available at http://www.w3.org/TR/2002/REC-xml-
exc-c14n-20020718/.

RFC 2119
RFC 2119: Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
1997. Available at http://www.ietf.org/rfc/rfc2119.txt.

RFC 2387
RFC 2387: The MIME Multipart/Related Content-type, E. Levinson, 1998. Available
at: http://www.ietf.org/rfc/rfc2387.txt.

RFC 2388
RFC 2388: Returning Values from Forms: multipart/form-data, L. Masinter, 1998.
Available at: http://www.ietf.org/rfc/rfc2388.txt.

RFC 2396
RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee,
R. Fielding, L. Masinter, 1998. Available at: http://www.ietf.org/rfc/rfc2396.txt.

RFC 2616
RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,1999. Available at: ht-
tp://www.ietf.org/rfc/rfc2616.txt.

XHTML Modularization
Modularization of XHTML, M. Altheim, et al., 2001. W3C Recommendation available
at http://www.w3.org/TR/xhtml-modularization/.

XForms Req
XForms Requirements, Micah Dubinko, Dave Raggett, Sebastian Schnitzenbaumer,
Malte Wedel, 2001. W3C Working Draft available at: http://www.w3.org/TR/xhtml-
forms-req.

XML Base
XML Base, Jonathan Marsh, 2001. W3C Recommendation available at: ht-
tp://www.w3.org/TR/xmlbase/.

XML Events

A SCHEMA FOR XFORMS

121

http://www.w3.org/MarkUp/Forms/2002/XForms-Schema.xsd
http://www.w3.org/MarkUp/Forms/2002/XForms-Schema.xsd
http://www.w3.org/TR/2003/REC-xml-events-20031014/#a_schema_attribs
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2387.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/xhtml-modularization/
http://www.w3.org/TR/xhtml-forms-req
http://www.w3.org/TR/xmlbase/

XML Events - An events syntax for XML, Steven Pemberton, T. V. Raman, Shane P.
McCarron, 2002. W3C Proposed Recommendation available at: ht-
tp://www.w3.org/TR/xml-events/.

XML 1.0
Extensible Markup Language (XML) 1.0 (Second Edition), Tim Bray, Jean Paoli, C.
M. Sperberg-McQueen, Eve Maler, 2000. W3C Recommendation available at: ht-
tp://www.w3.org/TR/REC-xml

XML Names
Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, 1999. W3C Re-
commendation available at: http://www.w3.org/TR/REC-xml-names.

XPath 1.0
XML Path Language (XPath) Version 1.0, James Clark, Steve DeRose, 1999. W3C
Recommendation available at: http://www.w3.org/TR/xpath.

XML Schema part 1
XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney,
Noah Mendelsohn, 2001. W3C Recommendation available at: ht-
tp://www.w3.org/TR/xmlschema-1/.

XML Schema part 2
XML Schema Part 2: Datatypes, Paul V. Biron, Ashok Malhotra, 2001. W3C Recom-
mendation available at: http://www.w3.org/TR/xmlschema-2/.

XSLT 1.0
XSL Transformations (XSLT) Version 1.0, James Clark, 1999. W3C Recommendation
available at: http://www.w3.org/TR/xslt.

B.2 Informative References

Algorithms
The Art of Computer Programming: Volume 1 Fundamental Algorithms, D. E. Knuth,
Addison-Wesley, Reading, MA. 1968. Third edition, 1997. ISBN:0-2018-9683-4.

AUI97
Auditory User Interfaces--Toward The Speaking Computer, T. V. Raman, Kluwer
Academic Publishers, 1997. ISBN:0-7923-9984-6.

CSS2
Cascading Style Sheets, level 2 (CSS2) Specification, Bert Bos, Håkon Wium Lie,
Chris Lilley, Ian Jacobs, 1998. W3C Recommendation available at: ht-
tp://www.w3.org/TR/REC-CSS2.

DDJ-ArrayDoubling
Resizable Arrays, Heaps and Hash Tables, John Boyer, Doctor Dobb's Journal, CMP
Media LLC, January 1998 Issue.

DOM2 Core
Document Object Model (DOM) Level 2 Core Specification, Tom Pixley, 2000. W3C
Recommendation available at: http://www.w3.org/TR/DOM-Level-2-core/.

DOM2 Events
Document Object Model (DOM) Level 2 Events Specification, Tom Pixley, 2000.
W3C Recommendation available at: http://www.w3.org/TR/DOM-Level-2-Events/.

B REFERENCES

122

http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/DOM-Level-2-core/
http://www.w3.org/TR/DOM-Level-2-Events/

EXSLT
EXSLT Web site. Available at http://www.exslt.org.

Java Unicode Blocks
Java 2 Platform, Standard Edition, v 1.4.0 API Specification; Class Character.Uni-
codeBlock, Sun Microsystems, Inc, 2002. Available at ht-
tp://java.sun.com/j2se/1.4/docs/api/java/lang/Character.UnicodeBlock.html.

P3P 1.0
The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, Lorrie Cranor,
Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall, Joseph Reagle,
2001. W3C Last Call Working Draft available at: http://www.w3.org/TR/P3P/.

SVG 1.1
SVG 1.1, Jon Ferraiolo, FUJISAWA Jun, Dean Jackson, 2003. W3C Recommendation
available at: http://www.w3.org/TR/SVG11/.

TAG Finding 7
TAG Finding: URIs, Addressability, and the use of HTTP GET, Dan Connolly, 2002.
Available at: http://www.w3.org/2001/tag/doc/get7

UAAG 1.0
User Agent Accessibility Guidelines 1.0, Ian Jacobs, Jon Gunderson, Eric Hansen,
2002. Working Draft available at http://www.w3.org/TR/UAAG10/.

Unicode Scripts
Script Names, Mark Davis, 2001. Unicode Technical Report #24 available at ht-
tp://www.unicode.org/unicode/reports/tr24/.

XForms Basic
XForms Basic Profile, Micah Dubinko, T. V. Raman, 2003. W3C Candidate Recom-
mendation available at: http://www.w3.org/TR/xforms-basic/.

XHTML 1.0
XHTML 1.0: The Extensible HyperText Markup Language - A Reformulation of
HTML 4 in XML 1.0, Steven Pemberton, et al., 2000. W3C Recommendation available
at: http://www.w3.org/TR/xhtml1.

XLink 1.0
XML Linking Language (XLink) Version 1.0, Steve DeRose, Eve Maler, David
Orchard, 2001. W3C Recommendation available at: http://www.w3.org/TR/xlink.

XML Schema part 0
XML Schema Part 0: Primer, David C. Fallside, 2001. W3C Recommendation
available at: http://www.w3.org/TR/xmlschema-0/.

C Privacy Considerations

C.1 Using P3P with XForms

P3P privacy policies may be associated with any forms transmitted over HTTP that have
URIs associated with them. In the future, mechanisms may be specified for associating
P3P policies with content transmitted over other protocols.

C PRIVACY CONSIDERATIONS

123

http://www.exslt.org/
http://java.sun.com/j2se/1.4/docs/api/java/lang/Character.UnicodeBlock.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/Character.UnicodeBlock.html
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/SVG11/
http://www.w3.org/2001/tag/doc/get7
http://www.w3.org/TR/UAAG10/
http://www.unicode.org/unicode/reports/tr24/
http://www.w3.org/TR/xforms-basic/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xmlschema-0/

P3P allows for policies to be associated with an individual URI or a set of URIs. By asso-
ciating a separate policy with each URI a site can declare a very precise policy that ad-
dresses exactly what data is collected with a particular HTTP request and how that data
will be used. However, site management is substantially easier for many sites if they declare
a single policy that covers many URIs, or even their entire Web presence.

The P3P specification specifies several methods for referencing a P3P policy reference
file, which in turn associates P3P policies with URIs and cookies. XForms can be P3P
enabled using any of the methods that are appropriate for the Web site in which they are
embedded. Some special considerations regarding forms are addressed in the P3P Specific-
ation. [P3P 1.0]

Different P3P policies may be applied to the representation of a form embedded in a con-
taining document to that which is associated with the data submitted via that form. If the
form representation is served from a different server than the form is submitted to, it is
likely that separate P3P policy reference files and policies will be needed. Typically the
form representation causes only clickstream data (as defined in [P3P 1.0] section 5.6.4)
to be transferred, while a form submission causes much more data to be transferred.

D Recalculation Sequence Algorithm

XForms Processors are free (and encouraged) to skip or optimize any steps in this algorithm,
as long as the end result is the same. The XForms recalculation algorithm considers
model items and model item properties to be vertices in a directed graph. Edges between
the vertices represent computational dependencies between vertices.

Following is the default handling for a recalculate action. Action recalculate
is defined in 10.1.4 The recalculate Element.

1 A master dependency directed graph is created as detailed in D.1 Details on Creating
the Master Dependency Directed Graph.

2 To provide consistent behavior, implementations must reduce the number of vertices
to be processed by computing a pertinent dependency subgraph consisting only of ver-
tices and edges that are reachable from nodes that require recomputation. This is detailed
in D.2 Details on Creating the Pertinent Dependency Subgraph. Note that on a first
recomputation (such as on form load), the pertinent dependency subgraph will be the
same as the master dependency directed graph.

3 A topological sort is performed on the vertices of the pertinent dependency subgraph,
resulting in an order of evaluation in which each vertex is evaluated only after those
vertices on which it depends and before all vertices which depend on it. The topological
sort algorithm is discussed at [Algorithms].

4 The recalculate process completes.

D RECALCULATION SEQUENCE ALGORITHM

124

D.1 Details on Creating the Master Dependency Directed Graph

The master dependency directed graph can be considered an array with one record for
each vertex, each having the following fields:

InstanceNode: a reference to the associated instance data node
type: indicates the aspect of the instance node represented by the vertex
(the text content or a model item property such as readOnly or required)
depList: a list of vertices that refer to this vertex
in-degree: the number of vertices on which this vertex depends
visited: a flag used to ensure vertices are not added to a subgraph multiple
times
index: an association between vertices in the master dependency directed
graph and a subgraph

The depList for each vertex is assigned to be the referenced XML nodes of a given in-
stance node, which are obtained by parsing the computed expression in the node (e.g., the
calculate, relevant, readonly, or required property). Any expression violating any Binding
Expression Constraint causes an exception (4.5.4 The xforms-compute-exception Event),
terminating the recalculate process.

The depList for a vertex v is assigned to be the vertices other than v whose computa-
tional expressions reference v (described below). Vertex v is excluded from its own
depList to allow self-references to occur without causing a circular reference exception.

A computational expression appearing in a calculate attribute controls the text content
(value) of one or more instance nodes. A vertex exists for each instance node to represent
the expression in the context of the node. Likewise, computational expressions for model
item properties such as readOnly and required are applied to one or more instance
nodes, and vertices are created to represent such expressions in the context of each applic-
able node. The computational expression of each vertex must be examined to determine
the XML nodes to which it refers. Any expression violating any Binding Expression
Constraint causes an exception (4.5.4 The xforms-compute-exception Event), terminating
the recalculate process. A computation expression refers to a vertex v if a subexpres-
sion indicates the InstanceNode for v and v represents the instance node text content (its
value). In this version of XForms, model item properties such as readOnly and re-
quired cannot be referenced in an expression.

D.2 Details on Creating the Pertinent Dependency Subgraph

If all calculations must be performed, which is the case on form load, then the pertinent
dependency subgraph is simply a duplicate of the master dependency directed graph. If
the recalculation algorithm is invoked with a list of changed instance data nodes since the
last recalculation, then the pertinent dependency subgraph is obtained by exploring the
paths of edges and vertices in the computational dependency directed graph that are
reachable from each vertex in the change list. The method of path exploration can be depth
first search, a suitable version of which appears in the pseudo-code below.

D RECALCULATION SEQUENCE ALGORITHM

125

Example: Sample Algorithm to Create the Pertinent Dependency Subgraph

This algorithm creates a pertinent dependency subgraph S from a list of changed instance
data nodes L_c. Variables such as v and w represent vertices in the
master dependency directed graph. The same variables ending with S indicate vertices
in the pertinent dependency subgraph S.

// Use depth-first search to explore master digraph subtrees rooted at

// each changed vertex. A 'visited' flag is used to stop exploration

// at the boundaries of previously explored subtrees (because subtrees

// can overlap in directed graphs).

for each vertex r in Lc

 if r is not visited

 {

 Push the pair (NIL, r) onto a stack

 while the stack is not empty

 {

 (v, w) = pop dependency pair from stack

 if w is not visited

 {

 Set the visited flag of w to true

 Create a vertex wS in S to represent w

 Set the index of w equal to the array location of wS

 Set the index of wS equal to the array location of w

 Set the InstanceNode of wS equal to the InstanceNode of w

 Set the type of wS equal to the type of w

 For each dependency node x of w

 Push the pair (w, x) onto the stack

 }

 else Obtain wS from index of w

 if v is not NIL

 {

 Obtain vS from index of v

 Add dependency node for wS to vS

 Increment inDegree of wS

 }

 }

 }

// Now clear the visited flags set in the loop above

for each vertex vS in S

{

 Obtain v from index of vS

 Assign false to the visited flag of v

}

Note that the number of vertices and dependency nodes in the pertinent dependency sub-
graph is not known beforehand, but a method such as array doubling (see [DDJ-Array-
Doubling]) can be used to ensure that building the subgraph is performed in time linear
in the size of S.

D RECALCULATION SEQUENCE ALGORITHM

126

D.3 Details on Computing Individual Vertices

The following steps process vertices, resulting in a recalculated form:

1 A vertex with inDegree of 0 is selected for evaluation and removed from the pertinent
dependency subgraph. In the case where more than one vertex has inDegree zero, no
particular ordering is specified. If the pertinent dependency subgraph contains vertices,
but none have an inDegree of 0, then the calculation structure of the form has a loop,
and an exception (4.5.4 The xforms-compute-exception Event) must be thrown, ter-
minating processing.

2 If the vertex corresponds to a computed item, computed expressions are evaluated as
follows:

a calculate: If the value of the model item changes, the corresponding instance
data is updated and the dirty flag is set.

b relevant, readOnly, required, constraint: If any or all of these com-
puted properties change, the new settings are immediately placed into effect for as-
sociated form controls.

3 For each vertex in the depList of the removed vertex, decrement the inDegree by 1.

4 If no vertices remain in the pertinent dependency subgraph, then the calculation has
successfully completed. Otherwise, repeat this sequence from step 1.

D.4 Example of Calculation Processing

For example, consider six vertices a, b, v, w, x, and y. Let a and b represent the text
content of instance nodes that will be set by a binding from user input controls. Let v and
w be vertices representing the calculated value and the validity property of a third instance
node c. These vertices would result from a bind element B with calculate and
constraint attributes and a nodeset attribute that indicates c. Suppose that the value
of c is the product of a and b and that the value is only valid if it does not exceed 100.
Likewise, suppose x and y are vertices representing the calculated value and the validity
property of a fourth instance node d. Let the value of d be the sum of a and b, and let d
be valid if the value does not exceed 20. The figure below depicts the dependency digraph
for this example.

D RECALCULATION SEQUENCE ALGORITHM

127

Vertices a and b have edges leading to v and x because these vertices represent the calcu-
late expressions of c and d, which reference a and b to compute their product and sum,
respectively. Similarly, v and x have directed edges to w and y, respectively, because w
and y represent the constraint expressions of c and d, which reference the values of
c and d to compare them with boundary values.

If a and b are initially equal to 10, and the user changes a to 11, then it is necessary to
first recalculate v (the value of c) then recalculate w (the validity property of the value of
c). Likewise, x (the value of d) must be recalculated before recalculating y (the validity
property of the value of d). In both cases, the validity of the value does not change to
false until after the new product and sum are computed based on the change to a.
However, there are no interdependencies between v and x, so the product and sum could
be computed in either order.

The pertinent subgraph excludes b and only vertex a has in-degree of zero. The vertex a
is processed first. It is not a computed vertex, so no recalculation occurs on a, but its re-
moval causes v and x to have in-degree zero. Vertex v is processed second. Its value
changes to 121, and its removal drops the in-degree of vertex w to zero. Vertex x is pro-
cessed next, changing value to 21. When x is removed, its neighbor y drops to in-degree
zero. The fourth and fifth iterations of this process recalculate the validity of w and y, both
of which change to false.

E Input Modes

The attribute inputmode provides a hint to the user agent to select an appropriate input
mode for the text input expected in an associated form control. The input mode may be a
keyboard configuration, an input method editor (also called front end processor) or any
other setting affecting input on the device(s) used.

Using inputmode, the author can give hints to the agent that make form input easier for
the user. Authors should provide inputmode attributes wherever possible, making sure
that the values used cover a wide range of devices.

E INPUT MODES

128

E.1 inputmode Attribute Value Syntax

The value of the inputmode attribute is a white space separated list of tokens. Tokens
are either sequences of alphabetic letters or absolute URIs. The later can be distinguished
from the former by noting that absolute URIs contain a ':'. Tokens are case-sensitive. All
the tokens consisting of alphabetic letters only are defined in this specification, in E.3 List
of Tokens (or a successor of this specification).

This specification does not define any URIs for use as tokens, but allows others to define
such URIs for extensibility. This may become necessary for devices with input modes that
cannot be covered by the tokens provided here. The URI should dereference to a human-
readable description of the input mode associated with the use of the URI as a token. This
description should describe the input mode indicated by this token, and whether and how
this token modifies other tokens or is modified by other tokens.

E.2 User Agent Behavior

Upon entering an empty form control with an inputmode attribute, the user agent should
select the input mode indicated by the inputmode attribute value. User agents should
not use the inputmode attribute to set the input mode when entering a form control with
text already present. To set the appropriate input mode when entering a form control that
already contains text, user agents should rely on platform-specific conventions.

User agents should make available all the input modes which are supported by the (oper-
ating) system/device(s) they run on/have access to, and which are installed for regular use
by the user. This is typically only a small subset of the input modes that can be described
with the tokens defined here.

Note:

Additional guidelines for user agent implementation are found at [UAAG 1.0].

The following simple algorithm is used to define how user agents match the values of an
inputmode attribute to the input modes they can provide. This algorithm does not have
to be implemented directly; user agents just have to behave as if they used it. The algorithm
is not designed to produce "obvious" or "desirable" results for every possible combination
of tokens, but to produce correct behavior for frequent token combinations and predictable
behavior in all cases.

First, each of the input modes available is represented by one or more lists of tokens. An
input mode may correspond to more than one list of tokens; as an example, on a system
set up for a Greek user, both "greek upperCase" and "user upperCase" would correspond
to the same input mode. No two lists will be the same.

Second, the inputmode attribute is scanned from front to back. For each token t in the
inputmode attribute, if in the remaining list of tokens representing available input modes
there is any list of tokens that contains t, then all lists of tokens representing available input

E INPUT MODES

129

modes that do not contain t are removed. If there is no remaining list of tokens that contains
t, then t is ignored.

Third, if one or more lists of tokens are left, and they all correspond to the same input
mode, then this input mode is chosen. If no list is left (meaning that there was none at the
start) or if the remaining lists correspond to more than one input mode, then no input mode
is chosen.

Example: Assume the list of lists of tokens representing the available input modes is:
{"cyrillic upperCase", "cyrillic lowerCase", "cyrillic", "latin", "user upperCase", "user
lowerCase"}, then the following inputmode values select the following input modes:
"cyrillic title" selects "cyrillic", "cyrillic lowerCase" selects "cyrillic lowerCase",
"lowerCase cyrillic" selects "cyrillic lowerCase", "latin upperCase" selects "latin", but
"upperCase latin" does select "cyrillic upperCase" or "user upperCase" if they correspond
to the same input mode, and does not select any input mode if "cyrillic upperCase" and
"user upperCase" do not correspond to the same input mode.

E.3 List of Tokens

Tokens defined in this specification are separated into two categories: Script tokens and
modifiers. In inputmode attributes, script tokens should always be listed before modifiers.

E.3.1 Script Tokens

Script tokens provide a general indication the set of characters that is covered by an input
mode. In most cases, script tokens correspond directly to [Unicode Scripts]. Some tokens
correspond to the block names in Java class java.lang.Character.UnicodeBlock ([Java
Unicode Blocks]) or Unicode Block names. However, this neither means that an input
mode has to allow input for all the characters in the script or block, nor that an input mode
is limited to only characters from that specific script. As an example, a "latin" keyboard
doesn't cover all the characters in the Latin script, and includes punctuation which is not
assigned to the Latin script. The version of the Unicode Standard that these script names
are taken from is 3.2.

CommentsInput Mode Token
Unicode script namearabic
Unicode script namearmenian
Unicode script namebengali
Unicode script namebopomofo
used to input braille patterns (not to indicate a braille input
device)

braille

Unicode script namebuhid
Unicode script namecanadianAboriginal
Unicode script namecherokee
Unicode script namecyrillic

E INPUT MODES

130

CommentsInput Mode Token
Unicode script namedeseret
Unicode script namedevanagari
Unicode script nameethiopic
Unicode script namegeorgian
Unicode script namegreek
Unicode script namegothic
Unicode script namegujarati
Unicode script namegurmukhi
Unicode script namehan
Unicode script namehangul
Subset of 'han' used in writing Koreanhanja
Unicode script namehanunoo
Unicode script namehebrew
Unicode script name (may include other Japanese scripts
produced by conversion from hiragana)

hiragana

International Phonetic Alphabetipa
Subset of 'han' used in writing Japanesekanji
Unicode script namekannada
Unicode script name (full-width, not half-width)katakana
Unicode script namekhmer
Unicode script namelao
Unicode script namelatin
Unicode script namemalayalam
mathematical symbols and related charactersmath
Unicode script namemongolian
Unicode script namemyanmar
Unicode script nameogham
Unicode script nameoldItalic
Unicode script nameoriya
Unicode script namerunic
Subset of 'han' used in writing Simplified ChinesesimplifiedHanzi
Unicode script namesinhala
Unicode script namesyriac
Unicode script nametagalog
Unicode script nametagbanwa
Unicode script nametamil
Unicode script nametelugu
Unicode script namethaana
Unicode script namethai
Unicode script nametibetan
Subset of 'han' used in writing Traditional ChinesetraditionalHanzi

E INPUT MODES

131

CommentsInput Mode Token
Special value denoting the 'native' input of the user (e.g. to
input her name or text in her native language).

user

Unicode script nameyi

E.3.2 Modifier Tokens

Modifier tokens can be added to the scripts they apply in order to more closely specify
the kind of characters expected in the form control. Traditional PC keyboards do not need
most modifier tokens (indeed, users on such devices would be quite confused if the software
decided to change case on its own; CAPS lock for upperCase may be an exception).
However, modifier tokens can be very helpful to set input modes for small devices.

CommentsInput Mode Token
lowercase (for bicameral scripts)lowerCase
uppercase (for bicameral scripts)upperCase
title case (for bicameral scripts): words start with an upper
case letter

titleCase

start input with one uppercase letter, then continue with
lowercase letters

startUpper

digits of a particular script (e.g. inputmode='thai digits')digits
symbols, punctuation (suitable for a particular script)symbols
text prediction switched on (e.g. for running text)predictOn
text prediction switched off (e.g. for passwords)predictOff
half-width compatibility forms (e.g. Katakana; deprecated)halfWidth

E.4 Relationship to XML Schema pattern facets

User agents may use information available in an XML Schema pattern facet to set the input
mode. Note that a pattern facet is a hard restriction on the lexical value of an instance data
node, and can specify different restrictions for different parts of the data item. Attribute
inputmode is a soft hint about the kinds of characters that the user may most probably
start to input into the form control. Attribute inputmode is provided in addition to pattern
facets for the following reasons:

1 The set of allowable characters specified in a pattern may be so wide that it is not possible
to deduce a reasonable input mode setting. Nevertheless, there frequently is a kind of
characters that will be input by the user with high probability. In such a case, input-
mode allows to set the input mode for the user's convenience.

2 In some cases, it would be possible to derive the input mode setting from the pattern
because the set of characters allowed in the pattern closely corresponds to a set of
characters covered by an inputmode attribute value. However, such a derivation
would require a lot of data and calculations on the user agent.

E INPUT MODES

132

3 Small devices may leave the checking of patterns to the server, but will easily be able
to switch to those input modes that they support. Being able to make data entry for the
user easier is of particular importance on small devices.

E.5 Examples

This is an example of a form for Japanese address input. It is shown in table form; it
will be replaced by actual syntax in a later version of this specification.

inputmodeCaption:
hiraganaFamily name
katakana(in kana)
hiraganaGiven name
katakana(in kana)
latin digitsZip code
hiraganaAddress
katakana(in kana)
latin lowerCaseEmail
latin digitsTelephone
user predictOnComments

F XForms and Styling (Non-Normative)

This informative section provides a broad outline of new and existing CSS features needed
to style XForms content. A future Recommendation from the CSS Working Group will
fully develop the specification of these features.

F.1 Pseudo-classes

A CSS pseudo-class is used to select elements for styling based on information that lies
outside of the document tree or that cannot be expressed using the other selectors.

Relationship to XFormsDefined in:Name
Selects any form control bound to a node with
the model item property relevant evaluating
to true or false (respectively).

[CSS3]:enabled & :dis-
abled

Selects any form control bound to a node with
the model item property required evaluating
to true or false (respectively).

TBD:required & :op-
tional

Selects any form control bound to a node that
is currently valid or invalid (respectively), as
defined by XForms 1.0.

TBD:valid & :invalid

Selects any form control bound to a node with
the model item property readonly evaluating
to true or false (respectively).

TBD:read-only &
:read-write

F XFORMS AND STYLING (NON-NORMATIVE)

133

Selects any form control bound to a node that
contains a value the form control is not or is
capable of rendering, (respectively).

TBD:out-of-range &
:in-range

This list is not exhaustive; other pseudo-classes may be defined.

F.2 Pseudo-elements

Pseudo-elements are abstractions about the document tree beyond those specified by the
document language. Pseudo-elements do not appear in the DOM; they are used only for
purposes of styling.

Relationship to XFormsDefined
in:

Name

Represents the "active" area of a form control excluding
the label; this corresponds in HTML to input and other

TBD::value

form control elements. This pseudo-element is a child of
the form control element, and appears immediately after
the required label element.
Represents a single item from a repeating sequence. Its
position is as a parent to all the elements in a single re-

TBD::repeat-

item
peating item. Each ::repeat-item is associated with
a particular instance data node, and is affected by the
model item properties (e.g. 'relevant') found there, as
the related style properties will cascade to the child ele-
ments.
Represents the current item of a repeating sequence. Its
position is as a parent of all the elements in the index re-

TBD::repeat-

index
peating item (and as a child to the ::repeat-item
pseudo-element), thus any style declarations applying to
this pseudo-element override those on the parent ::re-
peat-item.

This list is not exhaustive; other pseudo-elements may be defined.

F.3 Examples

The following examples show how basic styling can be accomplished on form controls
and repeating structures.

F XFORMS AND STYLING (NON-NORMATIVE)

134

@namespace xforms url(http://www.w3.org/2002/xforms);

/* Display a red background on all invalid form controls */

*:invalid { background-color:red; }

/* Display a red asterisk after all required form controls */

:required::after { content: ""; color:red; }

/* Do not render non-relevant form controls */

*:disabled { visibility: hidden; }

/* The following declarations cause form controls and their labels

to align neatly, as if a two-column table were used */

xforms|group { display: table; }

xforms|input { display: table-row; }

xforms|input > xforms|label { display: table-cell; }

xforms|input::value { border: thin black solid; display: table-cell; }

/* Display an alert message when appropriate */

*:valid > xforms|alert { display: none; }

*:invalid > xforms|alert { display: inline; }

/* Display repeat-items with a dashed border */

*::repeat-item { border: dashed; }

/* Display a teal highlight behind the current repeat item */

*::repeat-index { background-color: teal; }

G Complete XForms Examples (Non-Normative)

This section presents complete XForms examples. These and additional examples are
maintained at http://www.w3.org/MarkUp/Forms/2002/Examples.

G.1 XForms in XHTML

<!--$Id: index-all.html,v 1.515 2003/10/03 14:35:39 tvraman

Exp $-->

<html xmlns:my="http://commerce.example.com/payment" xm-

lns:ev="http://www.w3.org/2001/xml-events" xmlns:xsd="ht-

tp://www.w3.org/2001/XMLSchema" xmlns:xforms="ht-

tp://www.w3.org/2002/xforms" xmlns="ht-

tp://www.w3.org/2002/06/xhtml2">

<head>

<title xml:lang="fr">XForms en XHTML</title>

<xforms:model schema="payschema.xsd">

<xforms:instance>

<my:payment as="credit">

<my:cc />

<my:exp />

</my:payment>

</xforms:instance>

<xforms:submission action="http://www.example.com/buy.rb"

method="post" id="s00" />

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

135

http://www.w3.org/MarkUp/Forms/2002/Examples/

<xforms:bind nodeset="my:cc" relevant="../@as='credit'" re-

quired="true()" />

<xforms:bind nodeset="my:exp" relevant="../@as='credit'"

required="true()" />

</xforms:model>

</head>

<body>

 ...

<group xmlns="http://www.w3.org/2002/xforms">

<trigger>

<label>Français</label>

<toggle case="fr" ev:event="DOMActivate" />

</trigger>

<trigger>

<label>English</label>

<toggle case="en" ev:event="DOMActivate" />

</trigger>

</group>

<switch xmlns="http://www.w3.org/2002/xforms">

<case id="fr">

<select1 ref="@as">

<label xml:lang="fr">Choisissez un mode de paiement</label>

<choices>

<item>

<label xml:lang="fr">Comptant</label>

<value>cash</value>

<message level="modeless" ev:event="xforms-select"

xml:lang="fr">

Ne pas envoyer d'argent comptant par la poste.</message>

</item>

<item>

<label xml:lang="fr">Carte bancaire</label>

<value>credit</value>

</item>

</choices>

</select1>

<input ref="my:cc">

<label xml:lang="fr">Numéro de carte bancaire</label>

<alert xml:lang="fr">Saississez un numéro de carte ban-

caire en cours

 (séparez par un espace ou un trait d'uni-

on chaque groupe de chiffres)</alert>

</input>

<input ref="my:exp">

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

136

<label xml:lang="fr">Date d'échéance</label>

</input>

<submit submission="s00">

<label xml:lang="fr">Achetez</label>

</submit>

</case>

<case id="en">

<select1 ref="@as">

<label xml:lang="en">Select Payment Method</label>

<choices>

<item>

<label xml:lang="en">Cash</label>

<value>cash</value>

<message level="modeless" ev:event="xforms-select"

xml:lang="en">

Please do not mail cash.</message>

</item>

<item>

<label xml:lang="en">Credit</label>

<value>credit</value>

</item>

</choices>

</select1>

<input ref="my:cc">

<label xml:lang="en">Credit Card Number</label>

<alert xml:lang="en">Please specify a valid credit card num-

ber

 (use spaces or hyphens between di-

git groups)</alert>

</input>

<input ref="my:exp">

<label xml:lang="en">Expiration Date</label>

</input>

<submit submission="s00">

<label xml:lang="en">Buy</label>

</submit>

</case>

</switch>

 ...

</body>

</html>

Schema file payschema.xsd:

<!-- payschema.xsd -->

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

137

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:my="http://commerce.example.com/payment" target-

Namespace="http://commerce.example.com/payment" elementForm-

Default="qualified">

<xsd:element name="payment">

<xsd:complexType name="payment">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:choice>

<xsd:element ref="my:cc" />

<xsd:element ref="my:exp" />

</xsd:choice>

</xsd:sequence>

<xsd:attribute name="as" type="my:paymentAs" />

</xsd:complexType>

</xsd:element>

<xsd:element name="cc" type="my:cc" />

<xsd:element name="exp" type="xsd:gYearMonth" />

<xsd:simpleType name="cc">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\s*((\d+)[-\s])+([\d]+)\s*" />

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="paymentAs">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="cash" />

<xsd:enumeration value="credit" />

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

G.2 Editing Hierarchical Bookmarks Using XForms

<html xmlns:ev="http://www.w3.org/2001/xml-events" xm-

lns:my="http://commerce.example.com/payment" xmlns:xsd="ht-

tp://www.w3.org/2001/XMLSchema" xmlns:xforms="ht-

tp://www.w3.org/2002/xforms" xmlns="ht-

tp://www.w3.org/2002/06/xhtml2" xml:lang="en">

<head>

<style type="text/css">

xforms|input.editField {

font-weight:bold; font-size:20px; width:500px

 }

xforms|label.sectionLabel {

font-weight:bold; color:white; background-color:blue

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

138

 }

xforms|submit {

font-family: Arial; font-size: 20px; font-style: bold; col-

or: red

 }

</style>

<title>Editing Hierarchical Bookmarks In X-Smiles </title>

<xforms:model id="bookmarks">

<xforms:instance src="bookmarks.xml" />

<xforms:submission id="s01" method="post" action="http://ex-

amples.com/" />

</xforms:model>

</head>

<body>

<xforms:repeat nodeset="section" id="repeatSections">

<xforms:input ref="@name" class="editField">

<xforms:label class="sectionLabel">Section</xforms:label>

</xforms:input>

<!-- BOOKMARK REPEAT START -->

<xforms:repeat nodeset="bookmark" id="repeatBookmarks">

<xforms:input ref="@name">

<xforms:label>Bookmark name</xforms:label>

</xforms:input>

<xforms:input ref="@href">

<xforms:label>URL</xforms:label>

</xforms:input>

</xforms:repeat>

</xforms:repeat>

<p>

<!-- INSERT BOOKMARK BUTTON -->

<xforms:trigger id="insertbutton">

<xforms:label>Insert bookmark</xforms:label>

<xforms:insert nodeset="section[index('repeatSections')]/book-

mark" at="index('repeatBookmarks')" position="after"

ev:event="DOMActivate" />

</xforms:trigger>

<!-- DELETE BOOKMARK BUTTON -->

<xforms:trigger id="delete">

<xforms:label>Delete bookmark</xforms:label>

<xforms:delete nodeset="section[index('repeatSections')]/book-

mark" at="index('repeatBookmarks')" ev:event="DOMActivate"

/>

</xforms:trigger>

</p>

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

139

<p>

<!-- INSERT SECTION BUTTON -->

<xforms:trigger id="insertsectionbutton">

<xforms:label>Insert section</xforms:label>

<xforms:insert nodeset="section" at="index('repeatSections')"

position="after" ev:event="DOMActivate" />

</xforms:trigger>

<!-- DELETE SECTION BUTTON -->

<xforms:trigger id="deletesectionbutton">

<xforms:label>Delete section</xforms:label>

<xforms:delete nodeset="section" at="index('repeatSections')"

ev:event="DOMActivate" />

</xforms:trigger>

</p>

<!-- SUBMIT BUTTON -->

<xforms:submit submission="s01">

<xforms:label>Save</xforms:label>

<xforms:hint>Click to submit</xforms:hint>

</xforms:submit>

</body>

</html>

Initial instance file bookmarks.xml:

<!--This is the bookmarks.xml file -->

<bookmarks>

<section name="main">

<bookmark href="http://www.example.com/xforms.xml" name="Main

page" />

</section>

<section name="demos">

<bookmark href="http://www.example.com/demo/images.fo"

name="images" />

<bookmark href="http://www.example.com/demo/xf-ecma.xml"

name="ecma" />

<bookmark href="http://www.example.com/demo/sip.fo"

name="sip" />

</section>

<section name="XForms">

<bookmark href="file:///C/source/xmlevents.xml" name="XML

events" />

<bookmark href="file:///C/source/model3.xml" name="model3"

/>

<bookmark href="file:///C/source/repeat.fo" name="repeat"

/>

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

140

</section>

</bookmarks>

G.3 Survey Using XForms and SVG

The following example shows one possible way of integrating XForms with [SVG 1.1].
Note that the complete set of rules for integrating XForms and SVG are not fully specified
at the time this specification was published. Future versions of the XForms, SVG, or other
W3C specifications might define more complete rules for integrating XForms and SVG
which might not be compatible with the example below.

Note that the example below does not use SVG's switch and requiredExtensions
features, which are commonly used in conjunction with foreignObject.

<!-- <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> -->

<svg xmlns:s="http://example.com/survey" xmlns:ev="ht-

tp://www.w3.org/2001/xml-events" xmlns:xforms="ht-

tp://www.w3.org/2002/xforms" xmlns:xlink="ht-

tp://www.w3.org/1999/xlink" xmlns="ht-

tp://www.w3.org/2000/svg" width="700px" height="600px"

viewBox="0 0 700 600">

<defs>

<polygon id="bullet" points="-30,-30, -10,-10, -20,10"

fill="#007138" />

<xforms:model id="form1" schema="surveyschema.xsd">

<xforms:instance id="instance1">

<s:survey xmlns="http://example.com/survey">

<s:drink>none</s:drink>

<s:espressoPrefs>

<s:numberPerWeek>0</s:numberPerWeek>

<s:sugar>0</s:sugar>

<s:lemon>Always</s:lemon>

</s:espressoPrefs>

</s:survey>

</xforms:instance>

<xforms:submission id="submit1" method="post" action="ht-

tp://www.example.org/surveyhandler" />

</xforms:model>

</defs>

<title>Espresso survey</title>

<desc>Sample SVG and XForms - espresso customer survey</desc>

<g>

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

141

<text x="50" y="70" font-size="40" font-family="Arial Black,

sans-serif" font-weight="900">Customer Survey: Es-

presso</text>

<g font-family="Arial, Helvetica, sans-serif" font-size="18">

<foreignObject x="80" y="150" width="250" height="40">

<xforms:select1 appearance="minimal" model="form1"

ref="s:drink">

<xforms:label>

<g transform="translate(80, 140)">

<use xlink:href="#bullet" />

<text>Your usual coffee drink is:</text>

</g>

</xforms:label>

<xforms:item>

<xforms:label>Rich, dark espresso</xforms:label>

<xforms:value>espresso</xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>Creamy cappuccino</xforms:label>

<xforms:value>cappuccino</xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>Long, milky lattï¿½</xforms:label>

<xforms:value>lattï¿½</xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>Don't like coffee!</xforms:label>

<xforms:value>none</xforms:value>

</xforms:item>

</xforms:select1>

</foreignObject>

<foreignObject x="80" y="240" width="250" height="40">

<xforms:range model="form1" start="0" end="30" step="5"

ref="s:espressoPrefs/s:numberPerWeek">

<xforms:label>

<g transform="translate(80, 230)">

<use xlink:href="#bullet" />

<text>Shots of espresso per week:</text>

</g>

</xforms:label>

</xforms:range>

</foreignObject>

<foreignObject x="80" y="350" width="250" height="40">

<xforms:select model="form1" ref="s:espressoPrefs/s:sugar">

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

142

<xforms:label>

<g transform="translate(80, 340)">

<use xlink:href="#bullet" />

<text>Sugar?</text>

</g>

</xforms:label>

<xforms:item>

<xforms:label>Yes</xforms:label>

<xforms:value>X</xforms:value>

</xforms:item>

</xforms:select>

</foreignObject>

<foreignObject x="80" y="420" width="250" height="90">

<xforms:select1 appearance="full" model="form1" ref="s:es-

pressoPrefs/s:lemon">

<xforms:label>

<g transform="translate(80, 410)">

<use xlink:href="#bullet" />

<text>Lemon?</text>

</g>

</xforms:label>

<xforms:item>

<xforms:label>Required for the full experience</xforms:label>

<xforms:value>Always</xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>Whatever</xforms:label>

<xforms:value>Indifferent</xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>Keep that citrus to yourself</xforms:label>

<xforms:value>Never</xforms:value>

</xforms:item>

</xforms:select1>

</foreignObject>

</g>

<use xlink:href="#bullet" x="101" y="64" trans-

form="scale(7,3)" />

<foreignObject y="150" x="500" height="60" width="100">

<xforms:submit model="form1">

<xforms:label>Send survey</xforms:label>

</xforms:submit>

</foreignObject>

<!--- keep the graphics data out of this example listing -->

G COMPLETE XFORMS EXAMPLES (NON-NORMATIVE)

143

<image xlink:href="espresso.svg" x="400" y="230" width="280"

height="270" />

</g>

</svg>

H Changelog (Non-Normative)

This section summarizes changes since the 1 August XForms 1.0 Proposed Recommend-
ation.

• Minor editorial adjustments.

• Added disclaimer text to SVG example.

I Acknowledgments (Non-Normative)

This document was produced with the participation of current XForms Working Group
participants:

• Steven Pemberton, W3C/CWI (Co-chair)

• Sebastian Schnitzenbaumer, SAP/Mozquito (Co-chair)

• Rob McDougall, Adobe

• Micah Dubinko, Cardiff (Editor)

• Mikko Honkala, Helsinki University Of Technology

• Roland Merrick, IBM (Editor)

• T. V. Raman, IBM (Editor)

• David Landwehr, Novell

• Kenneth Sklander, Novell

• John Boyer, PureEdge Solutions Inc.

• Thierry Michel, W3C (W3C Team Contact)

• Leigh Klotz, Xerox (Editor)

• Mark Birbeck, x-port.net Ltd. (Invited Expert)

• Subramanian Peruvemba, Oracle Corp.

• Mark Seaborne, Origo Services Limited

• Daniel Vogelheim, Sun Microsystems

H CHANGELOG (NON-NORMATIVE)

144

Former Working Group participants:

• Peter Stark, Ericsson

• Vincent Godefroy, EDF R&D

• Davanum Srinivas, Computer Associates

• Doug Dominiak, Openwave

• Frank Boumphrey, HTML Writer's Guild

• Linda Bucsay Welsh, Intel

• Gavin McKenzie, JetForm Corporation

• John McCarthy, Lawrence Berkeley National Laboratory

• Frank Olken, Lawrence Berkeley National Laboratory

• Ray Waldin, Lexica, LLC

• Tantek Çelik, Microsoft

• Josef Dietl, Mozquito Technologies

• Dave Hyatt, Netscape/AOL

• Eric Pollmann, Netscape/AOL

• Kazunari Kubota, NTT DoCoMo, Inc.

• Kaori Nakai, NTT DoCoMo, Inc.

• Tom Butcher, OpenDesign

• Ted Wugofski, Openwave

• Jeremy Chone, Oracle

• K. P. Lee, Philips

• Panagiotis Reveliotis, Philips

• Roli Wendorf, Philips

• David Cleary, Progress Software

• Mike Mansell, PureEdge Solutions Inc

• Michael Fergusson, SoftQuad

• Zoe Lacroix, SurroMed, Inc.

• Dave Navarro, WebGeek Inc.

I ACKNOWLEDGMENTS (NON-NORMATIVE)

145

• Masayasu Ishikawa, W3C (Team Contact until September 2001)

• Dave Raggett, W3C/Openwave (Team Contact until December 2000)

• Larry Masinter, Xerox

The XForms Working Group has benefited in its work from the participation of Invited
Experts:

• Tom Schnetlage, University of Berkeley

• Dan Gillman, Federal Bureau of Labor Statistics

• Eliot Christian, U.S. Geological Survey

Note:

Editor Acknowledgments: Previous versions of this document were edited with assist-
ance from Dave Raggett (until December 2000), Linda Bucsay Welsh (until April
2001), and Josef Dietl (until October 2001). Martin Dürst edited the section on input
modes.

Note:

Additional Acknowledgments: The editors would like to thank Kai Scheppe, Malte
Wedel, and Götz Bock for constructive criticism on early versions of the binding
discussion and their contributions to its present content. We thank John Boyer for
authoring parts of the XForms events and action handler processing models as well
as sections on the recalculation sequence algorithm. Finally, we would like to thank
members of the public www-forms@w3.org mailing list for their careful reading of
draft versions of this specification and providing constructive suggestions and criti-
cisms.

Note:

Additional Acknowledgments: The Working Group would like to thank the following
members of the XML Schema-XForms joint task force: Daniel Austin (chair), David
Cleary, Micah Dubinko, Martin Dürst, David Ezell, Leigh Klotz, Noah Mendelsohn,
Roland Merrick, and Peter Stark for their assistance in identifying a subset of XML
Schema for use in XForms.

J Production Notes (Non-Normative)

This document was encoded in the XMLspec DTD (which has documentation available).
The XML sources were transformed using xmlspec.xsl style sheet. The XML Schema
portion of the Appendix was rendered into HTML with the xmlverbatim XSLT stylesheet
(used with permission). The primary tools used for editing were SoftQuad XMetaL and
EMACS with psgml and XAE. The XML was validated using XMLLint (part of the

J PRODUCTION NOTES (NON-NORMATIVE)

146

http://www.w3.org/XML/1998/06/xmlspec-v21.dtd
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm
http://www.w3.org/XML/1998/06/xmlspec.xsl
http://www.informatik.hu-berlin.de/%7Eobecker/XSLT/

GNOME libxml package) and transformed using XSLTProc—part of the GNOME libxsl
package). The multi-file HTML version was produced using the Xalan processor. The
HTML versions were also produced at times with the Saxon engine. The editors used the
W3C CVS repository and the W3C IRC server for collaborative authoring.

J PRODUCTION NOTES (NON-NORMATIVE)

147

